High-side current monitor operates at high voltage

Greg Sutterlin and Brian Whitaker, Maxim Integrated Products, Sunnyvale, CA

The simplest technique for measuring current in an actuator or a motor is to monitor the ground current with a resistive element between the load and the ground. Because the device and its associated electronics share a ground potential, you need to amplify only the ground-current signal. This approach, however, does not detect device short circuits to ground, which can overload the high-side drive circuitry. To avoid such potential fault conditions, you should use a high-side current monitor to detect short circuits and similar faults that can occur following the current monitor. High-side current monitoring has advantages, but it finds limited use because of the dearth of devices able to handle the high voltage levels—24V to many hundreds of volts—prevalent in the industry. Off-the-shelf devices can operate to 32 and 76V, but even 76V is insufficient for many applications. Figure 1 shows a simple way to adapt a standard 32V device for use at any voltage level, subject to limitations of the external components. (The components in Figure 1 can accommodate 130V.)

The accuracy of the circuit is better than 1% for load currents greater than 30 mA. IC1’s current-output stage allows easy implementation of the current mirror needed for level-shifting the output signal to ground. Thus, you can easily monitor the ground-referenced signal by using an A/D converter or a comparator. The circuit monitors load current in the presence of a 130V-dc common-mode voltage. You must ensure that you do not violate IC1’s absolute maximum rating—36V with respect to the ground pin—for the RS+, RS−, and V+ pins. For that purpose, zener diode D1 limits the voltages between the V+ and RS−, and GND pins to 24V. Thus, the typical voltage between these pins is 24V minus the VBE of Q1, or 23.3V. The zener-diode current for this circuit is approximately 700 μA. Note that the manufacturer’s suggested bias current is 500 μA, but the zener diode’s di/dt slope goes negative below 300 μA, a condition that can introduce noise or even oscillation. The minimum specified bias—300 to 500 μA—sets the maximum value of R1, and the maximum allowed power dissipation for R1 and D1 combined sets the minimum value for R2. Thus, for supply rails of 100 to 250V, a reasonable R1 value is 150 to 225 kΩ—150 kΩ in this case.

Q1 and R1 form a shunt regulator. The design uses Q1 because of its maximum VCE rating of −300V, high gain of 100V/V at 1 mA, and its ability to handle 500 mW of power. Output current is proportional to the voltage difference, VSENSE, between RS+ and RS−: IOUT = g_m × VSENSE where VSENSE = RSENSE × ILOAD. Transconductance for IC1 is 10 mA/V. If the maximum monitored load current, ILOAD, is 4A, and RSENSE is 10 mΩ, then the maximum IOUT is 10 mA/V × 10 mΩ × 4A = 400 mA. Thus, IOUT is proportional to ILOAD, and the maximum expected output is 400 mA. For applications of wide dynamic range in which VSENSE can approach the absolute maximum rating of the differential pair, 700 mV, you should protect the sense pins by adding series resistors between RSENSE and RS+ and between RSENSE and RS−. You should select the resistor values to limit input currents to within 10 mA when the RS+ to RS− difference is 700 mV.

IOUT is now proportional to ILOAD, but, for easy monitoring, you must level-shift it to ground by using the Q1-Q2 combined.

Figure 1

This circuit enables a 36V current-monitoring IC to operate at common-mode voltages as high as 130V.
current mirror. Q_2’s high gain forces the collector current to closely approximate the emitter current which, when you apply it to R_2, produces a measurable voltage at V_{OUT}. As with Q_1, Q_2 needs a maximum V_{CE} rating of -240V. The device in Figure 1 is rated at -300V. V_{OUT} now equals $I_{OUT} \times R_2$. (The actual output current at Q_2’s collector is slightly less, because of Q_2’s base current.) At $I_{LOAD} = 4$A, $V_{OUT} = 400 \mu A \times 10 \, k\Omega = 4$V.

You can accommodate designs with lower or higher operating voltages by properly selecting Q_1, Q_2, and the base resistor, R_1.

Digital potentiometers enable programmable biquadratic filter

Deborah Mancuso and Donald Schelle, Maxim Integrated Products, Sunnyvale, CA

Figure 1

![Figure 1](image)

Figure 2

![Figure 2](image)

Noise (a) and low bandwidth (b) plague switched-capacitor filters. The biquad filter of Figure 1 maintains less than 1% THD+N over the range 20 Hz to 200 kHz.

Digital potentiometers adjust the corner frequency, Q, and gain for this biquad analog filter.
frequency ω_c in radians per second by adjusting digital potentiometer IC$_2$ via the SPI interface. In the same fashion, set Q by adjusting IC$_1$, and gain by adjusting IC$_3$.

Note that adjusting Q does not affect the corner-frequency setting, and a gain adjustment does not affect the settings of Q or the corner frequency. The three equations below demonstrate this orthogonal tuning for the biquad filter:

$$\omega_c^2 = \frac{1}{(R_2 + R_{IC2})R_4C_1C_2},$$

$$Q = \frac{(R_2 + R_{IC1})^2C_1}{(R_2 + R_{IC2})R_4C_2},$$

$$H = \frac{R_2 + R_{IC2}}{R_3 + R_{IC3}}$$

where R_{IC1}, R_{IC2}, and R_{IC3} are the input resistances of IC$_1$, IC$_2$, and IC$_3$, respectively. The circuit in Figure 1 is substantially more complex than the switched-capacitor approach usually integrated into an IC, but the switching noise and low bandwidth of a switched-capacitor filter are unacceptable in many applications (Figure 2). A biquad filter offers better frequency and noise performance in exchange for more pc-board real estate.

And, because monolithic switched-capacitor filters are usually expensive, the biquad circuit of Figure 1 may be a cost-competitive solution. Many filter applications require higher supply voltages, bipolar operation, or both, so the single 5V supply associated with most switched-capacitor filters may be inadequate for a given application. You can implement ±15V voltage rails using digital potentiometers and high-voltage op amps, such as the MAX5438 and MAX437. The biquad filter is not limited to the lowpass response. You can implement highpass, bandpass, bandstop, and allpass filters by adding a fourth op amp to selected terminals of the original lowpass design (Figure 3).

High-current supply uses standard three-terminal regulator

I Hakki Cavdar, Karadeniz Technical University, Trabzon, Turkey

 Voltage-regulator design for high output currents can be a critical and difficult task. Although voltage regulators with 1A maximum output current are simple to design, thanks to 78xx three-terminal voltage regulators, at output currents higher than 1A output problems arise. For high output currents, voltage regulators usually use parallel-connected power transistors. The design of the operating points of these power transistors is a difficult task, because the transistors need critical power resistances at the collector and the emitter to set the dc operating point. Both the power transistors and the power resistors dissipate high power, so the design needs heat-sinking. This Design Idea implements a simple voltage regulator that delivers high output current. The basic idea is to parallel-connect multiple three-terminal regulators. These 78xx regulators each handle 1A and are available in 5, 6, 8, 9, 10, 12, 15, 18, and 24V versions. In Figure 1, two 7812 regulators are connected in parallel.

The two 7812s operate independently, and each delivers a maximum of 1A. D_1 and D_2 separate and isolate the two regulators. The output voltage is the regulator’s nominal output minus a diode drop: $V_{OUT} = V_{REG} - V_D$. The output voltage of the regulators is the specified value if the COM pin connects to ground (0V). To increase the output voltage of the circuit in Figure 1 to the desired value, the COM pin must connect to a voltage point one diode drop higher.
Buck regulators are usually the first choice when you design non-isolated step-down regulators unless the ratio of \(V_{\text{IN}} \) to \(V_{\text{OUT}} \) is greater than 10, the input voltage is high, or both. Low duty cycle can be problematic for FET drivers and cause current-mode control loops to lose control. Efficiency can fall dramatically to 60 to 70% at low \(V_{\text{OUT}} \) and current of only a few amps. The efficiency loss arises from switching losses, because the upper switch always sees full load current.

Figure 1 presents a circuit that looks a little like a buck regulator and uses a buck controller but is actually a voltage-mode, synchronous flyback circuit. The application it targets needs 3.3V at 2A with an efficiency requirement of greater than 85% and an input-voltage range of 36 to 60V. This one appeared the most promising of several evaluated technologies because of efficiency and cost advantages over buck and asynchronous-flyback approaches.

The LM2743 controller derives its power after start-up from the MMBTA06 transistor and 6.2V zener diode and from a bootstrap winding. Its EN (enable) input is a comparator for UVL (under-voltage lockout) to prevent start-up below 28V. The controller drives a synchronous switch that provides lower loss than a Schottky diode and uses the lower FET’s on-resistance as the sense resistor for current limiting. The 150-k\(\Omega \) resistor at Pin 11 produces a switching frequency of 250 kHz. The flyback transformer, designed by Pulse Engineering (www.pulseengineering.com), is a low

Synchronous flyback circuit provides high-efficiency conversion

Wayne Rewinkel, National Semiconductor, Phoenix, AZ

Figure 2 shows a voltage regulator that uses 20 7812s and delivers 20A. All the diodes are 1N4007 types. C=47,000 \(\mu \text{F} \), and all the numbered capacitors have a value of 4700 \(\mu \text{F} \). The 7812s all connect to a heat sink that a small fan ventilates. You can expand the concept of this Design Idea to hundreds of amperes.

A total of 20 7812 regulators extend the capability of Figure 1’s circuit to 20A.

This synchronous flyback circuit provides high efficiency with wide input/output ratios.
cost unit that provides 50 μH of primary inductance and a 3-to-1 turns ratio in a 13L×15W×11H-mm footprint. Its 3-to-1 turns ratio prevents the primary switch from seeing full output current, resulting in less switching loss than that of a buck regulator. The small LC filter at the output allows a single 10-μF ceramic capacitor to handle the high rms ripple current, and a low-cost aluminum capacitor also removes ripple and buffers load transients.

Figure 2 plots measured data at three input voltages and several output currents for the circuit in Figure 1. Efficiency is displayed on the left for the three uppermost curves, and the three lower curves show total loss in watts measured by the scale on the right. \(V_{\text{OUT}} \) ripple measured 6 mV p-p at no load, rising to 20 mV p-p at 4 A. The rapid fall in efficiency at 3.5 A comes from current limiting. As with any switcher and especially for flyback designs, pc-board layout is important. You obtain best performance with four or more layers, separate power and ground planes, and short and wide gate-drive connections. Although the circuit of Figure 1 targets use in a 7 W, single-output requirement, this synchronous flyback circuit applies to a wider power range; you can easily extend it to multiple outputs by adding secondary windings. The additional outputs can use either diode rectifiers or additional FETs driven from the low-gate driver. □