Circuit provides 4- to 20-mA loop for microcontrollers

Robert Most, Dow Corning Corp, Auburn, MI

The 4- to 20-mA current loop is ubiquitous in the world of controls in manufacturing plants. Discrete logic, microprocessors, and microcontrollers easily cover the digital portions of control schemes, such as limit switches, pushbuttons, and signal lights. Interfacing a 4- to 20-mA output to a rudimentary microcontroller can be problematic. A built-in A/D converter would be nice, but such a device is sometimes unavailable in the “economy” line of these processors. Serial 4- to 20-mA chips exist but are relatively expensive and require serial programming and involve microcontroller overhead. Most lower end chips lack dedicated serial ports and require pin-programming.

This circuit is a low-cost alternative that provides not only a 4- to 20-mA output, but also a digital feedback signal that indicates an open wire in the current loop (Figure 1). One output-port pin sets the current, and one input-port pin monitors an open circuit in the loop wire. The circuit does not require the open-loop feedback portion of the circuit for the current loop to operate; you can omit it for further cost savings.

The circuit derives its drive from a simple timer output in the microcontroller. The duty cycle of the timer determines the output current of the circuit. The input RC network in front of the first operational-amplifier signal conditions the pulse train from the processor, so that the op amp interprets it as a dc voltage. In addition, the network ensures that the minimum input voltage is close to 100 mV, even if the input is at ground potential. This minimum voltage ensures that the feedback loop of the first op amp does not fold back to the positive rail when you cut off npn transistor Q1. If you use a dual supply, the transistor has an additional voltage swing below ground potential to keep it in its active region and does not cut off. The emitter resistor of npn transistor Q1, sets the current span of the circuit. With a 5V drive from the microcontroller, the output current is 20 mA. A grounded input results in less than 1 mA. A duty cycle of 12.5% drives the loop at 4 mA and exhibits linear control to full scale. Although it may not be mandatory, most current loops prefer a grounded return path. The purpose of the second operational amplifier is to provide a current source, rather than the current sink of the first stage, and the grounded return path. Hence, pnp transistor Q3 provides this high-side drive.

The open-loop feedback portion of the circuit lets the microcontroller know that a fault condition exists on the line. The processor can then execute alarm, shutdown, or other control functions to mitigate possible safety concerns. When an open-loop condition occurs, Q3 shunts the entire loop current back through its emitter-base junction and through the 680 Ohm resistor to the op amp. The voltage developed across the 680 Ohm resistor turns on Q3, resulting in a logic-one feedback to the microcontroller. Note that the open loop requires at least 1 mA of current for the open indication to function, which is below the normal 4 mA—a “zero” output condi-

Figure 1

This configuration provides both a 4- to 20-mA loop and an open-circuit indication.

Circuit provides 4- to 20-mA loop for microcontrollers..............................89
Minimize the short-circuit current pulse in a hot-swap controller..................90
Reduce EMI by sweeping a power supply’s frequency...............................92
Get just enough boost voltage..94
Processor’s PWM output controls LCD/LED driver..................................96
Method provides automatic machine shutdown......................................98
Circuit makes simple high-voltage inverter..100

Publish your Design Idea in EDN. See the What’s Up section at www.edn.com.
Minimize the short-circuit current pulse in a hot-swap controller

Jim Sherwin and Thong Huynh, Maxim Integrated Products, Sunnyvale, CA

Because of internal circuit-breaker delay and limited MOS-gate pulldown current, many hot-swap controllers do not limit current during the first 10 to 50 μsec following a shorted output. The result can be a brief flow of several hundred amperes. A simple external circuit can counter this problem by minimizing the initial current spike and terminating the short circuit within 200 to 500 nsec. A typical 12V, 6A, hot-swap-controller circuit contains, as do many others, slow and fast comparators with trip thresholds of 50 and 200 mV (Figure 1). The 6-mΩ sense resistor, Rs, allows a nominal slow-comparator trip at 8.3A for overload conditions and a fast-comparator trip at 33.3A for short circuits. Only circuit resistances limit the initial short-circuit current spike during a period that includes the fast-comparator delay and the 30 μsec it takes to complete interruption of the short circuit by discharging M1’s gate capacitance. Various elements, such as Rs and the on-resistance of M1, contribute to the circuit resistances. The waveform recorded during a short circuit indicates a peak current of 400A from the 2.4V peak across Rs, decreasing to 100A in 28 μsec (Figure 2).

You can limit the short-circuit current duration to less than 0.5 μsec by adding a Darlington pnp transistor, Q1, to speed the gate discharge (Figure 3). D1 allows the gate to charge normally at turn-on, but, at turn-off, the controller’s 3-mA gate-discharge current is directed to the base of Q1. Q1 then acts quickly to discharge the gate, in less than 100 nsec. Thus, the high-current portion of the short circuit is limited to slightly more than the fast comparator’s delay time of 350 nsec. The apparent reverse overshoot current and the steep rise in the waveform of Figure 4 arise from parasitic series inductance in the sense-resistor chip. The circuit of Figure 5 can limit short-circuit current to approximately 100A for less than 200 nsec. The pnp transistor, Q1A, which triggers when the voltage across Rs reaches approximately 600 mV, drives the npn transistor, Q1B, to quickly discharge M1’s gate capacitance. The steep voltage waveform aids quick triggering of the pnp transistor.

The oscilloscope’s ground lead introduces an artifact, which appears as the leading-edge oscillation in Figure 6. Again, as in Figure 4, the apparent reverse-overshoot current and the steep rise in the waveform of Figure 6 arise from parasitic series inductance in the sense-resistor chip. C2 connects between the gate and source of M1 to reduce the positive-transient step voltage applied to the gate during a short circuit. Zener diode D1 reduces ID(ON) by limiting Vgs to less than the 7V available from the MAX4272. Although D1...
is rated at 5.1V when biased at 5 mA, it limits V_{GS} to approximately 3.4V in this circuit because only 100 µA of gate-charging current (zener-bias current) is available from the IC. The limited V_{GS} lowers $I_{D\text{on}}$—at some expense to on-resistance—and allows a quicker turn-off of M_1. You could also use D_1 and C_2 to some advantage in figures 1 and 3, to reduce $I_{D\text{on}}$ during short circuits.

Either of the two circuits can protect a backplane power source by minimizing the energy dissipated when a hot-swap-controller circuit incurs a short circuit. The simpler circuit (Figure 3) dramatically shortens the short-circuit-current interval to somewhat less than 500 nsec, and the slightly more complex circuit (Figure 5) reduces the peak short-circuit current to 100A, as well as truncating the pulse width to less than 200 nsec. You can apply either technique to most hot-swap-controller circuits. Individual results vary according to the impedance of the power source, the impedance of the short circuit, and the quality and attack time of the short circuit itself. Note that it is inordinately difficult to achieve a repeatable low-resistance short circuit by manual manipulation of a shorting bar. You require careful layout and low-ESR capacitors to create a power source with very low ESR.

The steep rise and reverse overshoot in Figure 3’s circuit are artifacts of sense-resistor parasitic inductance. The steep rise and reverse overshoot in Figure 3’s circuit are artifacts of sense-resistor parasitic inductance. The steep rise and reverse overshoot in Figure 3’s circuit are artifacts of sense-resistor parasitic inductance. The steep rise and reverse overshoot in Figure 3’s circuit are artifacts of sense-resistor parasitic inductance.

Reduce EMI by sweeping a power supply’s frequency

John Betten, Texas Instruments, Dallas, TX

Switching power supplies can be notorious noise generators. You should prevent this noise, which is conducted, radiated, or both, from returning to the input source, where it can potentially wreak havoc on other devices operating from the same input power. The goal of an EMI (electromagnetic-interference) filter is to block this noise and provide a low-impedance path back to the noise source. The larger the noise, the greater the size, expense, and difficulty of the filter design. Power supplies that operate at a fixed frequency have their largest EMI emission at this fundamental, fixed frequency. Emissions also occur at multiples of the switching frequency but at diminished amplitudes. The simple circuit in Figure 1 makes the switching converter operate over multiple frequencies rather than one, thereby reducing the time average at any one frequency. This scheme effectively lowers the peak emissions.

The circuit in Figure 1 is a self-starting oscillator with an oscillation frequency of approximately 500 Hz. When you apply power, C_3 begins to charge up from 0V, and the output of the TL331 comparator is in a high-impedance state because its noninverting input sees a higher voltage than that of the inverting input. As C_3 charges, its voltage crosses the voltage reference of the R_3-R_6 divider, and the comparator output trips to a low state. The voltage on R_7 instantly drops to a lower reference level because R_7 is now in parallel with R_5. C_1 begins to discharge toward this new reference level because R_5 is now in parallel with R_6. C_3 begins to discharge toward this new reference level because R_5 is now in parallel with R_6. The cycle repeats after C_3 discharges to the voltage on R_6 when the comparator output reopens. You must carefully select the components to ensure that the two voltage-reference states of R_5 are lower than the upper and lower possible charge states of C_3. The circuit uses C_3 to adjust the oscillator frequency; you should select C_3 to have a lower value than C_1. The oscillator’s frequency is approximately equal to.
Adding a current-mirror circuit to a boost circuit allows you to select the amount of boost voltage and to ensure a constant difference between the input and the output voltages (Figure 1). This circuit is useful for high-side-drive applications, in which a simple voltage doubler is unacceptable because of the voltage range of the components involved or where the input voltage can vary widely. You can also use the circuit at the front end of a power supply to ensure that the PWM controller has enough voltage to start correctly in low-input-voltage conditions.

The differential EMI-current measurement of Figure 3 (1 dBpV = 1 dBµA) shows the before-and-after effects of adding the frequency-shifting oscillator. This design easily achieves a 10-dBµA reduction with a 12-kHz sweep window. A wider window further reduces EMI, but the modulator frequency may become noticeable in the converter’s output ripple voltage. It is also desirable to make the injected ramp voltage as linear in shape as possible to prevent the switching converter from spending excess time at its switching-frequency limits. The nonlinearity can result in an EMI response with two distinct frequencies. You must take care not to operate the circuit below the power converter’s low-frequency limits, or saturation of magnetics may occur. This circuit demonstrates a low-cost, small-area approach to reducing conducted-EMI emissions.

Get just enough boost voltage

Kieran O’Malley, On Semiconductor, East Greenwich, RI

Adding a current-mirror circuit to a typical boost circuit allows you to select the amount of boost voltage and to ensure a constant difference between the input and the output voltages (Figure 1). This circuit is useful for high-side-drive applications, in which a simple voltage doubler is unacceptable because of the voltage range of the components involved or where the input voltage can vary widely. You can also use the circuit at the front end of a power supply to ensure that the PWM controller has enough voltage to start correctly in low-input-voltage conditions.
T he PWM (pulse-width-modulation) output available from many microprocessors is based on an internal 8- or 16-bit counter and features a programmable duty cycle. It is suitable for adjusting the output of an LCD driver (Figure 1), a negative-voltage LCD driver (Figure 2), or a current-controlled LED driver (Figure 3). The circuit comprises simply the PWM source, capacitor C, and resistors RD and RW. For CMOS circuits, you calculate the open-circuit output voltage as VCONT

\[
V_{\text{CONT}} = \frac{V_{\text{IN}} - V_{\text{OUT}} - V_{\text{REF}}(Q_{1A})}{1 \text{ mA}} = R_2
\]

\[
(14V - 24V - 0.6V) = 9.4 \text{ k}\Omega.
\]

Because the output voltage is not critical, you use a 10-k\(\Omega\) resistor.

Q_{1B} mirrors the current and sets up the feedback voltage to the PWM circuit. The CS5171 has an internal voltage of 1.28V (typical), so R_s yields the correct feedback voltage when the current flowing through it is 1 mA. In this case, by selecting 1.27 k\(\Omega\) for R_s, you obtain an output voltage of 24V. As V_{IN} varies, V_{OUT} tracks it and maintains a 10V difference between the input and the output. R_s helps reduce the power dissipation in Q_{1B}.

The PWM circuit in Figure 1 is the CS5171 from On Semiconductor (www.onsemi.com), but you can use the idea with any boost circuit. The current-mirror circuit, comprising the dual-pnp transistor, Q_s, and the associated resistors, establishes a current that depends on the voltage difference between V_{IN} and V_{OUT}. The dual-pnp transistor has a V_{CEO} of 65V. In this case, V_{IN} = 14V (nominal), so you need V_{OUT} to be 24V (nominal). First, calculate a value for R_s, thus establishing the reference current. If you select a reference current of 1 mA, you obtain

\[
\frac{(V_{\text{IN}} - V_{\text{OUT}} - V_{\text{REF}}(Q_{1A}))}{1 \text{ mA}} = R_2
\]

\[
(14V - 24V - 0.6V) = 9.4 \text{ k}\Omega.
\]

Processor’s PWM output controls LCD/LED driver

Joe Neubauer, Maxim Integrated Products, Sunnyvale, CA

This simple circuit provides positive-output voltage LCD drive.

This configuration provides negative-output-voltage LCD drive.
age stabilizes. For Figure 2, the output voltage, $V_{O\text{UT}}$, is a function of the PWM average voltage, V_{CONT}:

$$V_{\text{OUT}} = \frac{\text{VREF} - V_{\text{CONT}}}{R_{\text{FB}}} \times R_{\text{FB}},$$

where V_{REF} is the reference voltage at the feedback input. For Figure 3, the output current is a function of the PWM average voltage, V_{CONT}:

$$I_{\text{OUT}} = \frac{V_{\text{REF}} + \left(\frac{V_{\text{REF}} - V_{\text{CONT}}}{R_{\text{CONT}}} \times R_{\text{SET}}\right)}{R_{\text{CONT}}} \times K,$$

where V_{REF} is the reference voltage at the Set output and K is the current-scaling factor.

R_D isolates the capacitor from the feedback loop in the PWM-control methods. Assuming a stable voltage at the feedback point, the following equation defines the lowpass filter’s cutoff frequency: $f_C = 1/(2\pi RC)$, where $R = R_D || R_W$. To minimize ripple voltage at the output, you should set the cutoff frequency at least two decades below the PWM frequency.

Method provides automatic machine shutdown

Jean-Bernard Guiot, Mulhouse, France

Some machines need to run for long periods and therefore may finish their work in the middle of the night or during the weekend. For the time remaining, until the operator returns, the machines stay idle, uselessly consuming power. This Design Idea allows a machine to completely shut itself down after finishing its work. In addition, the method allows for informing the machine operator by phone. You insert the circuit into the area that Figure 1 indicates as a dashed line into the main supply line of the machine. The relay, K_{STOP}, connects to a free output of the programmable controller of the machine. You must program the controller in such a way that relay K_{STOP} is energized as long as the process is running. In normal operation, switch S_1 stays in manual position; thus, the power contactor, K_1, is on, and the machine receives power. When an operator starts the process, relay K_{STOP} energizes, and the indicator H_1 lights, signaling the operator that switch S_1 is ready for operation. The timer relay, K_{STOP}, is also on, closing its contact 18-15. Switching S_1 to automatic now has no effect.

Once the delay time expires, the contacts of K_{STOP} open, K_1 turns off, and the machine completely turns off. The varistors, V_{R1}, suppresses voltage spikes. You must select V_{R1}, K_1, K_{STOP}, and H_1 in accordance with the power-mains voltage and the power rating of the machine. You select K_{STOP} according to the controller’s output (the relay coil) and the power-mains voltage (the relay contacts). The circuit has worked satisfactorily in hundreds of machines over a five-year period.
A simple high-voltage MOSFET inverter solves the problem of driving a high-side MOSFET, using a low-voltage transistor, Q1, and a special arrangement involving D6 (Figure 1). This inverter is much faster than those that optocouplers drive, so dead-time problems are minimal. The inverter has the usual blocking diodes D4 and D6, and the parallel diodes D5 and D8. Q3 provides the turn-off signal to Q2. When Q3 turns on, Q3’s gate short-circuits to ground through R4. R4 limits current and dampens oscillations. Q3’s gate discharges quickly; only the value of R4 limits discharge time. Q1 stays off, thanks to R2, and C3 charges to 12V through D2. The gate pulse creates a current through C4, and D3 protects the circuit from reverse voltage.

Figure 1

This circuit is probably the simplest high-voltage inverter you can build.
base-emitter junction of Q₂.

In the turn-on of Q₂, the following scenario occurs: When the control input, PWM, goes low, Q₃ quickly turns off, thanks to D₇. A displacement current, \(C₄ \times \frac{dV}{dt} \), flows through C₄ to the base of Q₁. Q₁ charges the output capacitance of Q₃ and the gate capacitance of Q₂, and Q₂ turns on. C₃ supplies the collector current. If the period is long, Q₁ keeps conducting and compensating the leakage of Q₃. If D₆ were a Schottky diode, which is leaky, you would have to reduce the value of R₁. A short cross-conduction period exists between the two MOSFETs, a phenomenon that is more apparent when Q₃ turns off and Q₂ turns on. A small inductor, L₁, in series with the main supply limits the current spikes. The inductor needs a snubber comprising D₅, R₅, and C₅. Note that the inductor value is conservative and can be smaller.

The values are for a 370W, three-phase inverter with 150% overload capacity. If you change the MOSFET, the value of C₁ has to change according to the total gate charge plus the output capacitance of Q₃, which is much lower and, in fact, negligible. Q₁ amplifies the capacitor current, so C₄ is proportional to Q₃ \times hᵦₑ. Make C₄’s value no higher than necessary, because the base current in Q₁ would be too high. To obtain all the speed advantages of the circuit, the PWM signal should be able to quickly drive Q₁. If necessary, you can use a buffer circuit (Figure 2). You can drive the circuit with a single CMOS gate. The circuit in Figure 1 is probably the simplest high-voltage inverter you can design. It has served in thousands of three-phase motor drives from 0.37 to 0.75 kW.

![Figure 2](image-url)
This buffer enhances speed at the PWM input of Figure 1’s circuit.