This Design Idea describes a high-intensity, rechargeable flashlight system that you can build from a 6V lantern-type flashlight. The rechargeable battery comprises four 2V, 2.5-Ahr (ampere-hour) SLA (sealed lead-acid) cells, similar in size to a standard D-sized battery. SLA cells are especially well-suited to powering flashlights because of their low self-discharge rate. NiCd (nickel-cadmium) or NiMH (nickel-metal-hydride) cells can lose as much as 1% of their charge per day, compared with less than 0.2% per day for SLA cells. SLA cells are also easy to charge and can withstand abuse. The flashlight in this design uses a krypton high-intensity lamp. Maglite (www.maglite.com) makes this lamp as a replacement lamp for its line of flashlights. The lamps are extremely bright; have a standard miniature-flange-base, built-in lens; and are available in five- or six-cell versions. (Manufacturers typically rate flashlight lamps by the number of alkaline cells the flashlight uses.) The lamp’s operating voltage is approximately 1.25V per cell, which makes the lamp voltage of a six-cell lamp equal to 7.5V. This design uses a six-cell lamp for this flashlight, although you could also use a five-cell, 6.25V lamp. A five-cell lamp provides approximately 30% more light output but has a shorter lamp life. To increase lamp life, this flashlight includes the soft-start circuit in Figure 1.

Incandescent lamps inherently draw large start-up currents because of the filament’s relatively low resistance when it is cold. A tungsten filament’s resistance is typically 10 times lower when cold than it is when at normal operating temperature. When the full battery voltage suddenly hits a cold filament, the inrush current is typically 10 times the normal operating current, and this instant is when a lamp is likely to fail. Adding a soft-start circuit nearly eliminates this large inrush current, allowing for a higher power lamp and reducing the probability of the lamp’s failure at turn-on.

The soft-start circuit consists of an n-channel MOSFET in series with the lamp, which ramps the lamp voltage up at a controlled rate to reduce the inrush current. A gate-to-source capacitor controls the ramp speed. The lamp turns on in approximately 2 sec. Figure 2 shows the dramatic reduction in lamp inrush current when you use the soft-start circuit.

The charger is a 200-kHz step-down switching regulator using current-limited constant voltage to charge the battery (Figure 3). When a discharged battery connects to the charger, the charge cycle starts in a 1A constant-current mode. As the battery accepts charge, the battery voltage increases until it reaches the programmed charge voltage of 2.5V/cell (10V total). At this point, the charge cycle enters constant-voltage mode. During constant-voltage mode, the charge current drops exponentially. When the charge current reaches approximately 10% (100 mA) of the programmed current, the charge voltage drops to a float voltage of 2.35V/cell.

Figure 1

This soft-start circuit reduces inrush current, thereby prolonging lamp life.

Figure 2

Using the soft-start circuit in Figure 1 provides a dramatic decrease in inrush current.

Publish your Design Idea in EDN. See the What’s Up section at www.edn.com.
This battery charger uses current-limited constant voltage to charge the lead-acid cells in the flashlight.

(9.4V total). This dual-voltage approach provides a faster charge and also provides an LED indication when the battery is nearly fully charged. The charger keeps the battery at this float voltage, thus keeping the battery in a fully charged condition. You can leave the charger indefinitely connected to the battery without damage to the battery, although battery damage can result if it is fully discharged—when the battery voltage is less than 1.8V/cell—either through use or self-discharge. The FLAG pin is an open-collector output that indicates when the charge current has dropped to approximately 10% of the full programmed charge current.

A wall adapter with an output from 13V, 1A to 26V, 0.5A provides power to the charger. This design uses all surface-mount components to reduce the overall size of the charger. The pc-board layout should include wide ground traces that expand to larger copper areas to minimize the possibility of overheating the IC. The flashlight housing features a 3- to 4-in. reflector and has a handle on top; it is readily available from Radio Shack (www.radioshack.com) and other electronics outlets. The light is designed for a 6V lantern battery, but this design replaces the lantern battery with four D-sized, SLA cells. The cells leave enough room for the soft-start circuitry. Other modifications include replacing the switch with a high-quality SPDT switch and soldering all the connections for increased reliability. A dc power jack connects the flashlight to the charger.

Many portable appliances and other products that must operate from a single cell are restricted to working at very low voltages. It is thus difficult to drive white LEDs that typically have a forward voltage of 3 to 5V. The ability to flash the LED with a supply voltage as low as 1V presents additional complications. The circuit in the Figure 1 provides a discrete approach to these problems and allows a white LED to flash at a rate set by an RC time constant. Components Q1, Q2, R3, R4, and R5 form a simple Schmitt trigger that, together with R1 and C1, controls the flashing of the LED. Q3, Q4, and L1, and associated components form a voltage booster that steps up the single-cell voltage, V0, to a level high enough to drive the LED. Transistor Q4 functions as a switch that gates the booster on and off at a rate determined by the Schmitt-trigger section.

To understand how the booster section works, assume that Q4 is fully on, such that Q5’s emitter is roughly at the battery-supply voltage, V0. Q4 and R5 provide bias for Q5, which turns on and sinks current,
I₁, through inductor L₁. The inductor current ramps up at a rate determined mainly by Vₛ and the value of L₁; during this time, LED₁ and series diode D₁ are reverse-biased. The current continues to ramp up until it reaches a peak value, I₁PEAK. Q₅ can sustain no further increase, and the voltage across the inductor at this point reverses polarity. The resulting “flyback” voltage raises LED₁’s anode to a positive voltage higher than Vₛ, sufficient to forward-bias LED₁ and signal diode D₁. The flyback voltage is also coupled through C₄ and R₁₀ to Q₃’s base, thus causing Q₃ and, hence, Q₅ to turn off rapidly.

The inductor current now circulates around L₁, LED₁, and D₁, and, as the energy stored in L₁ decays, the current ramps down to zero. At this point, the inductor voltage again reverses polarity and the negative-going change is coupled through C₄, rapidly turning on Q₄ and, in turn, Q₅. Current again begins to ramp up in L₁, and the process repeats. The booster section oscillates at a rate determined by several factors. The important factors determining the rate of oscillation include the values of Vₛ, L₁, and D₁; the forward-current gain of Q₃; and the forward voltage of LED₁. With the component values in the figure, the oscillation frequency is typically 50 to 200 kHz. On each cycle, a pulse of current through LED₁ and, because this scenario reverses polarity and the voltage across the inductor at this point reverses polarity. The resulting “flyback” voltage raises LED₁’s anode to a positive voltage higher than Vₛ, sufficient to forward-bias LED₁ and signal diode D₁. The flyback voltage is also coupled through C₄ and R₁₀ to Q₃’s base, thus causing Q₃ and, hence, Q₅ to turn off rapidly.

The inductor current now circulates around L₁, LED₁, and D₁, and, as the energy stored in L₁ decays, the current ramps down to zero. At this point, the inductor voltage again reverses polarity and the negative-going change is coupled through C₄, rapidly turning on Q₄ and, in turn, Q₅. Current again begins to ramp up in L₁, and the process repeats. The booster section oscillates at a rate determined by several factors. The important factors determining the rate of oscillation include the values of Vₛ, L₁, and D₁; the forward-current gain of Q₃; and the forward voltage of LED₁. With the component values in the figure, the oscillation frequency is typically 50 to 200 kHz. On each cycle, a pulse of current through LED₁ and, because this scenario reverses polarity and the voltage across the inductor at this point reverses polarity. The resulting “flyback” voltage raises LED₁’s anode to a positive voltage higher than Vₛ, sufficient to forward-bias LED₁ and signal diode D₁. The flyback voltage is also coupled through C₄ and R₁₀ to Q₃’s base, thus causing Q₃ and, hence, Q₅ to turn off rapidly.

The inductor current now circulates around L₁, LED₁, and D₁, and, as the energy stored in L₁ decays, the current ramps down to zero. At this point, the inductor voltage again reverses polarity and the negative-going change is coupled through C₄, rapidly turning on Q₄ and, in turn, Q₅. Current again begins to ramp up in L₁, and the process repeats. The booster section oscillates at a rate determined by several factors. The important factors determining the rate of oscillation include the values of Vₛ, L₁, and D₁; the forward-current gain of Q₃; and the forward voltage of LED₁. With the component values in the figure, the oscillation frequency is typically 50 to 200 kHz. On each cycle, a pulse of current through LED₁ and, because this scenario reverses polarity and the voltage across the inductor at this point reverses polarity. The resulting “flyback” voltage raises LED₁’s anode to a positive voltage higher than Vₛ, sufficient to forward-bias LED₁ and signal diode D₁. The flyback voltage is also coupled through C₄ and R₁₀ to Q₃’s base, thus causing Q₃ and, hence, Q₅ to turn off rapidly.

The inductor current now circulates around L₁, LED₁, and D₁, and, as the energy stored in L₁ decays, the current ramps down to zero. At this point, the inductor voltage again reverses polarity and the negative-going change is coupled through C₄, rapidly turning on Q₄ and, in turn, Q₅. Current again begins to ramp up in L₁, and the process repeats. The booster section oscillates at a rate determined by several factors. The important factors determining the rate of oscillation include the values of Vₛ, L₁, and D₁; the forward-current gain of Q₃; and the forward voltage of LED₁. With the component values in the figure, the oscillation frequency is typically 50 to 200 kHz. On each cycle, a pulse of current through LED₁ and, because this scenario reverses polarity and the voltage across the inductor at this point reverses polarity. The resulting “flyback” voltage raises LED₁’s anode to a positive voltage higher than Vₛ, sufficient to forward-bias LED₁ and signal diode D₁. The flyback voltage is also coupled through C₄ and R₁₀ to Q₃’s base, thus causing Q₃ and, hence, Q₅ to turn off rapidly.

The inductor current now circulates around L₁, LED₁, and D₁, and, as the energy stored in L₁ decays, the current ramps down to zero. At this point, the inductor voltage again reverses polarity and the negative-going change is coupled through C₄, rapidly turning on Q₄ and, in turn, Q₅. Current again begins to ramp up in L₁, and the process repeats. The booster section oscillates at a rate determined by several factors. The important factors determining the rate of oscillation include the values of Vₛ, L₁, and D₁; the forward-current gain of Q₃; and the forward voltage of LED₁. With the component values in the figure, the oscillation frequency is typically 50 to 200 kHz. On each cycle, a pulse of current through LED₁ and, because this scenario reverses polarity and the voltage across the inductor at this point reverses polarity. The resulting “flyback” voltage raises LED₁’s anode to a positive voltage higher than Vₛ, sufficient to forward-bias LED₁ and signal diode D₁. The flyback voltage is also coupled through C₄ and R₁₀ to Q₃’s base, thus causing Q₃ and, hence, Q₅ to turn off rapidly.
its average forward current and is thus determined by the peak inductor current, \(I_{\text{L, peak}} \) and by the duration of the current pulse through the LED. Provided that \(I_{\text{L, peak}} \) is properly rated such that it does not saturate, the peak current depends largely on the maximum collector current that \(Q_s \) can sustain. For a given supply voltage, this figure depends primarily on \(Q_s \)’s forward-current gain, and on the value of \(R_8 \) that you can select to give optimum LED brightness at the lowest supply voltage. Experiment with different values of \(R_8 \) to get the best intensity for a given LED type. Take care, however, that the peak current does not exceed the LED’s maximum current rating when \(V_S \) is at a maximum. The actual value of \(L_1 \) is not critical, but values in the range 100 to 330 \(\mu \)H should provide good performance and reasonable efficiency. The transistor types in the circuit are not critical; the test circuit works well with general-purpose, small-signal devices having medium to high current gain. If possible, select low-saturation types for \(Q_3 \), \(Q_4 \), and \(Q_5 \). \(C_4 \) is not essential to circuit operation but helps to decouple any switching noise at \(Q_3 \)’s base.

\(C_4 \) acts as a charge reservoir and ensures that \(R_1 \) can charge \(C_4 \) from a stable voltage source \((V_{\text{P}}) \) when LED1 is on. Because the charging current is likely to be low, \(C_4 \) can be fairly small; a value of 1 nF should be adequate. Note that \(C_4 \) must connect to the junction of \(D_1 \) and LED1 as shown, rather than being charged, via a rectifying diode, from the flyback voltage at \(Q_3 \)’s collector. The reasons for this caveat are, first, that this approach ensures that \(V_S \) is only a diode drop above \(V_{\text{P}} \), thereby minimizing the value of \(R_1 \) necessary for a given \(C_4 \) charging current. Also, and more important, this approach places the forward voltage of the LED in the path from \(V_S \) through \(L_1 \) and \(R_1 \) to \(Q_3 \)’s base. Because the forward voltage of a white LED is usually at least 3V, this connection prevents \(Q_3 \) from being turned on via this route, which could otherwise cause the circuit to lock in the “off” state.

At first sight, it might appear that you can turn the booster section on and off by gating current to \(Q_3 \)’s base, thus obviating the need for \(Q_5 \). However, under certain conditions, once you activate the booster section, the feedback to \(Q_3 \)’s base via \(C_4 \) and \(R_1 \) is sufficient to maintain oscillation without feeding any dc bias to \(Q_3 \)’s base. Therefore, the only reliable way to gate the booster on and off is via \(Q_5 \), as shown. The test circuit starts up and operates with \(V_S \) as low as 0.9V, although the LED is dim at this voltage. The LED’s intensity is good at \(V_S = 1.5V \) (equivalent to a fully charged alkaline cell) and remains acceptable with \(V_S \) as low as 1V.

The circuit should find applications in toys, security devices, miniature beacons, and any other products that must provide a flashing visual indication while operating from a single cell.

Hot-swap controller handles dual polarity

Dan Meeks, Texas Instruments, Manchester, NH

Some applications require a hot-swap controller, a circuit-breaker function, or both for dual-polarity, dc-input power-supply rails. In some hot-swap cases, the requirement is based only on inrush-current considerations. Control of the inrush current is necessary to eliminate connector stress and glitching of the power-supply rails. Other applications may have issues when one of the supplies fails for some reason. A good example is a bias supply for a gallium-arsenide FET amplifier. If you remove the negative gate bias, then you must also remove the positive drain supply; otherwise, the device may destroy itself because of the resulting high drain current. You can meet both these requirements by using a single-channel, hot-swap controller.

The circuit in **Figure 1** uses a TPS2331, IC1, in a floating arrangement. The circuit references the IC’s ground to the negative input voltage. If the voltage on the positive rail is too low or the voltage current is high, IC5’s collector current is low, and the booster section is off. To turn on the booster section, you must gate the booster on and off via Q3, thus obviating the need for Q5. However, under certain conditions, once you activate the booster section, the feedback to Q3’s base via C4 and R1 is sufficient to maintain oscillation without feeding any dc bias to Q3’s base. Therefore, the only reliable way to gate the booster on and off is via Q5, as shown. The test circuit starts up and operates with VS as low as 0.9V, although the LED is dim at this voltage. The LED’s intensity is good at VS = 1.5V (equivalent to a fully charged alkaline cell) and remains acceptable with VS as low as 1V. The circuit should find applications in toys, security devices, miniature beacons, and any other products that must provide a flashing visual indication while operating from a single cell.

Figure 1

This circuit is a dual-polarity voltage sequencer for low-voltage applications.
on the negative rail is too high, the circuit cannot attain the 1.225V threshold at the VSENSE pin, and the IC turns off. The VSENSE pin incorporates approximately 30 mV of hysteresis to ensure a clean turn-on with no chatter.

When both supplies are beyond their respective thresholds, IC1 turns on, providing a controlled-slew-rate ramp-up of the two FETs. Note that the circuit uses only n-channel FETs, which have lower on-resistance for a given size and cost than p-channel devices. To turn on Q1A on, the TPS2331 has a built-in charge pump that generates a voltage above the positive rail, thus enhancing the FET. As the gate voltage builds, Q3 acts as a linear level translator, so that Q1B also ramps on. The turn-on speed is a function of the TPS2331’s 14-µA output current and the value of C3. The design uses the FETs based on the maximum resistance allowed in the dc path and the FETs’ power-dissipation figures. You can use virtually any size FET, depending on the current you want to control. Take care that the total voltage span across the TPS2331 does not exceed the maximum rating of 15V. If IC1 does not float between the input rails, the negative input may be larger.

Figure 2

This variation on Figure 1’s circuit can handle higher voltages.

Figure 2 shows such an application, in which 5V and −12V are the input supplies. The main requirement is that the level-shifting transistor, Q3, be able to handle the higher voltage. This circuit also allows you to use a positive input voltage as high as IC1’s maximum rating of 15V.

Temperature monitor measures three thermal zones

Susan Pratt, Analog Devices, Limerick, Ireland

You can use an ADT7461 single-channel temperature monitor; an ADG708 low-voltage, low-leakage CMOS 8-to-1 multiplexer; and three standard 2N3906 pnp transistors to measure the temperature of three separate remote thermal zones (Figure 1). Multiplexers have resistance, RON, associated with them; the channel matching and flatness of this resistance normally result in a varying temperature offset. This system uses the ADT7461 temperature monitor, which can automatically cancel resistances in series with the external temperature sensors, allowing its use as a multichannel temperature monitor. The resistance automatically cancels out, so RON flatness and channel-to-channel variations have no effect. Resistance associated with the pc-board tracks and connectors also cancels out, allowing you to place the remote-temperature sensors some distance from the ADT7461. The design requires no user calibration, so the ADT7461 can connect directly to the multiplexer. The ADT7461 digital temperature monitor
can measure the temperature of an external sensor with ±1°C accuracy. The remote sensor can be a monolithic or a discrete transistor and normally connects to the D+ and D− pins on the ADT7461. In addition to the remote-sensor-measurement channel, the ADT7561 has an on-chip sensor.

The diode-connected transistors have emitters that connect and then connect to the D+ input of the ADT7461, and each of the base-collector junctions connects to a separate multiplexer input (S1 to S3). You connect the selected remote transistor to the D− input on the ADT7461 by addressing the multiplexer, which address bits A2, A1, and A0 digitally control. The ADT7461 then measures the temperature of whichever transistor is connected through the multiplexer. The ADT7461 measures the temperature of the selected sensor without interference from the other transistors. **Figure 2** shows the results of measuring the temperature of three remote temperature sensors. The sensor at address 000 is at room temperature, the sensor at address 001 is at a low temperature, and the sensor at address 010 is at a high temperature. When you select no external sensor, the “open-circuit” flag in the ADT7461 register activates, and the Alert interrupt output asserts. You can expand the system to include as many external temperature sensors as your design requires. The limiting factor on the number of external sensors is the time available to measure all temperature sensors. If your design requires two-wire serial control of the multiplexer, you can use an ADG728 in place of the ADG708.

Figure 2 The system in Figure 1 measures ambient (address 000), cold (address 001), and hot (address 010) temperatures.