Today’s CPUs require high bandwidth on the pc board. As a result, differential signals, including DDR (double-data-rate) signals, are becoming common in ICs such as ASICs, clocks, and DRAM devices, and are gradually dominating pc-board design. Traditional TTL devices still remain, however, and system designers now face the task of interfacing the DDR devices with conventional single-ended signals. Numerous design guidelines make the job easier.

Working with differential signals helps to overcome the limitations of TTL signals. The TTL signal on a pc board becomes the bottleneck because the maximum frequency of TTL signals traveling through the board is less than 200 MHz. The large amplitude of TTL signals takes a longer time to swing between rails, and the high capacitance associated with TTL signals works in parallel with the bus structure to tremendously attenuate the edges of TTL signals and limits the maximum speed. TTL signals also consume high power at high speed due to the wide signal swing and high capacitance.

Differential receivers can reject common-mode noise and therefore can work at smaller amplitudes and at higher speeds. Differential signals have much lower capacitance due to their point-to-point (non-bus) structure. Thus, at low swing range and capacitance, differential signals can work at a much higher speed with low power consumption. The DDR clock also benefits from the double data rate, because it uses every edge as a clock.

An example of interfacing a single-ended signal to a DDR device uses a common DDR PLL clock buffer, the 855 (Figure 1). The series resistor R_{TER1} is a termination resistor that matches the impedance of the trace between the clock driver, IC1, and the DDR receiver, IC2. The signal at a trace that has a well-matched impedance forms an ideal shape of rising and falling edges at the end of trace. There is no overshoot, undershoot, or significant attenuation on the edges if the capacitive load is slight.

Transmission-line theory shows that the impedance of a trace is matched when $R_{OUT} = R_{TER1} = R_{TRACE}$. R_{OUT} is the output impedance of clock-driver IC1,
which is normally 8 to 45Ω. RTER is the series-termination resistor, which is normally 0 to 40Ω. The location of this resistor should be as close to the output pin as possible. RTRACE is the impedance of the trace between clock-driver IC1 and DDR-clock IC2. Trace parameters-and pc-board-fabrication techniques control the impedance of the trace, which is normally 50 to 60Ω.

For example, if ROUT is 30Ω, and RTER is 50Ω, then matching the trace impedance requires that RTER equals 20Ω.

REFLECTION EFFECT VERSUS RC EFFECT

The transmission-line-reflection effect and the RC effect affect the shape of the reflected waveform at the end of a trace. When the impedance of a trace is well-matched, according to the previous equation, the reflection at the end of the trace forms a perfect rail-to-rail waveform without overshoot, undershoot, or edge attenuation (Figure 2, Trace A). Overshoot and undershoot appear proportionally when \(R_{OUT} + R_{TER1} < R_{TRACE} \) (Trace B). Edge attenuation appears proportionally when \(R_{OUT} + R_{TER1} > R_{TRACE} \) (Trace C).

The RC effect is the result of the RC circuit’s comprising ROUT, RTER1, the trace capacitance, and the capacitance of the DDR receiver. When the capacitive load is higher than 40 pF, the RC effect slows the edges and overrides the overshoot, undershoot, and attenuation (Figure 3).

The transmission-line-reflection effect determines the shape of waveforms at the end of traces when the capacitive load is less than 20 pF and frequency is less than 200 MHz. In this condition, matching the impedance is essential. The RC effect dominates the shape of waveforms when the capacitive load is higher than 40 pF and significantly slows the edges of signals.

Therefore, when matching a trace that has heavy capacitance, such as a bus structure and long trace or cable, properly reducing the output impedance from the matching value is a common approach to compensate the loss due to the RC effect, especially in a bus structure. An IBIS-model simulation is a good tool to help in a system designer’s signal-integrity analysis.

At frequencies higher than 500 MHz, the reactance of a capacitive load is much lower and tremendously attenuates the signal. Therefore, the major goal for a high-speed-circuit design is a capacitive load of less than 10 pF at 500 MHz with a matched impedance. The low capacitance associated with the point-to-point structure of a differential signal is one of the main reasons that differential signals dominate current pc-board design.

ADJUST FEEDBACK DELAY FOR SYSTEM TIMING

The feedback loop comprises the trace and circuit between FBOUT and FBIN in Figure 1. The main advantage of a PLL clock over a non-PLL clock is the PLL clock’s ability to adjust the system-clock timing by altering the feedback time delay. The timing relationships among the clock input, clock output, and the feedback delay determine the amount of leading or lagging skew (Figure 4).

The feedback edge of FBIN at time \(T_2 \) is always chasing and locking onto the clock-input edges of the CLK input at time \(T_1 \) (traces A and B). As long as the PLL is functioning properly, the time difference between \(T_1 \) and \(T_2 \) is zero (\(T_1 - T_2 = 0 \)). This principle mechanism is the reason that the PLL can generate a precise output leading skew, in which the output is earlier than the input, or lagging skew.

The feedback delay between FBOUT and FBIN or \(T_1 - T_2 \) generates the same amount of output leading skew between \(Y_X \) (X ranges from 0 to 4 in Figure 1) and CLK, or \(T_1 - T_2 \), respectively, because the drivers of FBOUT...
and Yx are identical and connect to the same input. As long as the PLL is functioning, the following equation will always be true: T2 = T3 = T4 = T5. And because T2 = T3, the following is also true: T1 = T2 = T3. Thus, by varying the time delay between FBOUT and FBIN (T2 - T3), you can generate the same amount of output leading skew (T1 - T2) at Yx (traces C and D).

For instance, when the feedback delay between FBOUT and FBIN (T2 - T3) is zero, the output skew between Yx and CLK (T1 - T2) should be zero. If the feedback delay is 1.2 nsec, a 1.2-nsec leading skew occurs at Yx, and the output edge at Yx is 1.2 nsec earlier than the edges at CLK. The feature of generating leading skew is useful for a PLL DDR clock; it provides the approach of system clock-timing adjustments.

FEEDBACK DELAY

The delay of the trace in the feedback loop causes 70 to 85% of the feedback delay (T2 - T3, Figure 5). The speed of a signal traveling in a trace is 50 to 70% of the speed of light, which is approximately 6 to 8 in./nsec, depending on the type and parameter of the trace. The 70 to 85% trace-generated time delay provides a stable timebase. A common technique is to use a nonconnected second pair of traces at different lengths on the pc board for a spare timing option (Figure 5). You can jump-connect the second pair of traces to the feedback loop through pads if you choose to disconnect the first pair due to unsuitable timing after pc-board fabrication.

The RC circuit of R1, R2, C1, and the input capacitance of FBIN should generate 15 to 30% of the feedback time delay. This 15 to 30% delay provides fine-tuning flexibility. Fine-tuning the values of R1, R2, RTER2, and C1 after pc-board fabrication provides accurate system-clock timing. The default specification for RTER2 or R1 + R2 + RTER2 is 120Ω. Adding resistance of 0 to 22Ω to R1 and R2 and keeping RTER2 at 120Ω adds extra feedback delay due to the RC delay of R1, R2, and the input capacitance of FBIN and C1', if any. The default value of C1 is 0 pF because capacitance slows the slew rate, which is undesirable. Adding capacitance of 2 to 10 pF to C1 generates more feedback delay. Reducing RTER2 reduces the peak-to-peak swing range. In this case, the signal swings faster in the smaller range, and, therefore, the feedback delay decreases. Similarly, increasing the swing range increases the feedback delay.

If the lengths of the output traces at outputs Yx are not equal in the case when you want equal clock timings, you can match up the shorter traces with the longest trace with extra dummy routing. For instance, in Figure 5 there is a 1.2-nsec trace delay between Y0 (T4) and the clock receiver, T5. If you want a zero delay between CLK and IC3, the edge at Y0 must occur 1.2 nsec earlier than CLK, T1', to compensate for the trace delay between Y0 and IC3. Therefore, you need a 1.2-nsec feedback delay between FBOUT and FBIN (T2 - T3). Figure 6 shows a detailed timing relation.

In this example, the feedback trace generates 75%, or 0.9 nsec, of the 1.2-nsec feedback delay. The RC circuit compris-
Interfacing to DDR devices

For zero delay between CLK and IC3, Y0 must occur 1.2-nsec earlier than CLK.

Figure 6

For this circuit, which interfaces 3.3 and 5V single-ended signals to DDR, you adjust the values of R1 and R2 to fine-tune the voltage swing at V1.

Figure 7

For this circuit, which interfaces 3.3 and 5V single-ended signals to DDR, you adjust the values of R1, R2, RTER1, C1, and the input capacitance of FBIN generates the remaining 25%, or 0.3 nsec. When you connect 3.3 and 5V single-ended CMOS drivers to a DDR receiver, you can use the circuit in Figure 7 and the values in the corresponding table help to fine-tune R1 for a 0 to 2.5V swing at V1. The value of RTER1 is 0 to 15Ω. Increase RTER1 if overshoot and undershoot exists at V1; reduce RTER1 if the signal appears attenuated. You can use any single output of a DDR output pair as a 2.5V single-ended clock driver to drive a 2.5V clock receiver (Figure 8).

Adjust for Duty-Cycle Balance

DDR standards require more precise tolerance for duty-cycle balance than do...
normal TTL signals. Thus, you need to adjust the duty-cycle balance of the DDR output of a non-PLL DDR buffer when interfacing to a single-ended input signal (Figure 9). A DDR PLL clock-buffer has no duty-cycle balance issue because a DDR PLL clock-buffer is a PLL device; its feedback locks only to the input rising edge at CLK and ignores the duty cycle of the input signal. Therefore, its output duty cycle depends on the internal duty-cycle balance circuit, and you cannot ad-

Figure 8

A single output of a DDR output pair can drive a 2.5V single-ended clock receiver.

Figure 9

Adjusting the voltage at \(V_1 \) (a) can improve the duty cycle of the output clock (b).
In Figure 9a, the R_1/R_2 voltage divider determines the level at V_1. Normally, $V_1 = V_{cc}/2 = 1.25V$. Adjusting the voltage of V_1 can improve the duty cycle of the output clock (Figure 9b). The preferred values of R_1 and R_2 are 1 to 5 kΩ. Lower resistances cause higher dc current but provide better noise immunity, and vice versa.

Fine-tuning R_1 to adjust V_1 according to the following equation improves the output clock’s duty cycle: $V_1 = V_{cc}(R_2/(R_1 + R_2))$.

When adjusting the output clock’s duty cycle, fix the resistance of R_1 at 2 kΩ. Then replace R_1 with a 3-kΩ variable resistor. Then, measure the crosspoints of the DDR output clock’s duty cycle at $+Y_0$ and $-Y_0$ using two probes and adjusting R_1 until the output duty cycle is balanced. Carefully selecting the single-ended signal driver with a good duty cycle within 47 to 53% and minimal lot-to-lot variation is essential. It’s also important to perform routine duty-cycle sampling tests in production for lot-to-lot or processing variation. This duty-cycle-adjustment technique is also suitable for other differential signals, such as LVDS (low-voltage differential signaling) and LVPECL (low-voltage pseudo-emitter-coupled logic).

References
3. JEDEC Standard No. 44, “Standard for definition of CU877 clock driver for registered DDR2 DIMM applications,” JC40 Item No. 44, Revision 0.95; second showing: April 2002; May 3, 2002.

Author’s biography
Paul Li is an application-engineering manager at Pericom Semiconductor Corp (San Jose, CA, www.pericom.com). He is involved in the development of application circuit boards and systems; CMOS-circuit analysis and characterization; IBIS-model-system development; and research and development of new products. He holds an MSEE from Pacific States University (Los Angeles).