SELECT R_2 TO PROVIDE THE DESIRED ZENER OPERATING CURRENT, I_Z. SEE TEXT.

$$V_c = V_{ZENER}$$

$$R_e = \frac{1}{I_Z}$$

$$BW_1 = \frac{1}{2\pi R_e C_{IN}}$$

$$BW_2 = \frac{1}{2\pi R_1 C_1}$$

$$BW_3 = \frac{1}{2\pi R_{LOAD} C_{OUT}}$$

FOR AC SIGNALS, $V_{OUT} = V_{IN}(1 + (R_2/R_1))$,

WHERE $X_{C1} \ll R_1$.

TO MINIMIZE INPUT-BIAS-CURRENT ERRORS, R_2 SHOULD EQUAL R_{IN}.

Zener-diode biasing also improves the power-supply rejection of this non-inverting amplifier.