Filter design uses image parameters
Richard Kurzrok, RMK Consultants, Queens Village, NY

REFERENCE 1 GIVES LOW-COST image-parameter design techniques for LC lowpass filters. Filter design using a low number of circuit elements results in reduced costs for both parts procurement and manufacturing. The technique applies to highpass filters. You derive a composite highpass filter by using m-derived terminating half-sections with one or more constant-k interior full sections. Classic image-parameter design used m-derived half-sections with \(m = 0.6 \) for best passband impedance matching (in other words, high input and output return losses). The design uses a value of \(m = 0.5 \) for the terminating half-sections. This value provides sharper close-in selectivity while maintaining passband return losses that are satisfactory for most applications. Figure 1 shows the normalized schematic for the composite highpass filter. It uses midseries, m-derived, terminating half-sections with \(m = 0.5 \), plus two interior constant-k full sections. The 3-dB cutoff frequency, \(f_0 \), is 31.2 MHz, and source and load impedances, \(Z_0 \), are 50Ω. Reference levels of filter inductance

Multiplying the normalized filter in Figure 1 by the reference inductance and capacitance values yields this 31.2-MHz, 50V filter.

Table 1—Filter Parts List

<table>
<thead>
<tr>
<th>Function</th>
<th>Value</th>
<th>Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_7, L_4)</td>
<td>0.51 μH</td>
<td>Micro-Metals T 25-10 14T- #26</td>
<td>Two</td>
</tr>
<tr>
<td>(L_2, L_3)</td>
<td>0.13 μH</td>
<td>Micro-Metals T 25-10 14T- #26</td>
<td>Two</td>
</tr>
<tr>
<td>(C_2, C_3, C_4, C_5)</td>
<td>68 pF</td>
<td>CD-15 Series dipped mica</td>
<td>Four</td>
</tr>
<tr>
<td>(C_6)</td>
<td>50 pF</td>
<td>DC-15 Series dipped mica</td>
<td>One</td>
</tr>
<tr>
<td>Connectors</td>
<td>BNC female</td>
<td>Pomona 2447 panel receptacle</td>
<td>Two</td>
</tr>
<tr>
<td>Enclosure</td>
<td>Aluminum box</td>
<td>Hammond 1590A/Bud CU-123</td>
<td>One</td>
</tr>
<tr>
<td>Board</td>
<td>Cut by hand</td>
<td>Vector board 169P44C1</td>
<td>One</td>
</tr>
<tr>
<td>Standoffs</td>
<td>Male/female</td>
<td>Amatom 9794-SS-0440</td>
<td>Four</td>
</tr>
</tbody>
</table>

Note: all fixed capacitors have ±15% tolerance.
and capacitance are as follows:

$$L_0 = \frac{Z_0}{2\pi f_0} = 0.255 \ \mu H ;$$

$$C_0 = \frac{10^6}{2\pi f_0 Z_0} = 102 \ pF.$$

You obtain the actual inductance and capacitance values for the highpass filter by denormalization; in other words, by multiplying the normalized inductances and capacitances in Figure 1 by L_0 and C_0, respectively. Figure 2 shows the actual component values for a dissipationless highpass filter. Table 1 gives the parts list for the filter. Table 2 gives the measured amplitude response for the composite highpass filter. The results indicate inductor unloaded Qs of approximately 100. As the passband frequency approaches 100 MHz, some modest shape degradation occurs. You can reduce the degradation by using microstrip construction with surface-mount components. You can trim the filter’s cutoff frequency by spreading or squeezing the turns of the toroidal inductors. (DI #2533)

Reference

To Vote For This Design, Enter No. 362 at www.ednmag.com/infoaccess.asp

Circuit efficiently drives inductive loads

Carlisle Dolland, Honeywell Engines and Systems, Torrance, CA

In the driver circuit in Figure 1, the system controller provides the $V_{COMMAND}$ signal. $V_{COMMAND}$ equals the desired load current multiplied by R_8. When the controller applies this voltage to R_1, the output of IC1 goes high, applying voltage to the gates of Q1 and Q2. These transistors turn on, allowing load current to flow to ground through Q1 and R8. The current in the load ramps up, and a voltage proportional to the load current, sensed by R_9, feeds back to the inverting input of the comparator IC1. When this voltage exceeds the voltage at the noninverting input, the output of IC1 goes to ground. Q1 and Q2 then switch off. The load current now circulates around the loop comprising D1 and L1. During this time, the slope of the load current becomes negative because of the dissipation in D1 and the load resistance. The duration of this phase of the circuit’s operation is a function of the hysteresis (set by R_9, R_{10}, and R_4) and the decay of the voltage across C_2 (essentially a function of R_9). C_2 and R_9 determine the ripple current in the load. The circuit cannot use a power MOSFET for Q2, because of the intrinsic drain-to-source diode. You must use a device without the intrinsic diode, such as a 3N71. (DI #2535)

To Vote For This Design, Enter No. 363 at www.ednmag.com/infoaccess.asp

<table>
<thead>
<tr>
<th>TABLE 2—MEASURED AMPLITUDE RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>31.5</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>130</td>
</tr>
</tbody>
</table>

Inductive loads are tricky to drive. This circuit provides efficient drive to relays and solenoids.
Use a PC to record four-channel waveforms

Dean Chen, Dycam Inc, Chatsworth, CA

This design idea is a sequel to a previous one, “Use a printer port to record digital waveforms,” EDN, June 18, 1998, pg 136. Both ideas are similar: Use the PC’s printer port to sample waveforms, and use the PC’s memory to store data. The technique presented here expands the capability to four channels. The advantage is that you can see the relationships of the waveforms in the four channels. Figure 1 depicts the sampling circuit. It uses printer-port pins ACK, BUSY, PE, and SLCT to record signals. The 74LS04 is a buffer between the sampled signals and the printer port. Listing 1 is the sampling program, written in assembly language. Because there are four channels, every sample needs 4 bits (one nibble) to record. One byte can store two samples: odd and even samples. To accurately record signals, the sampling program needs exclusive access to the CPU.

Execution of the program must take

Figure 1

Use a PC to record four-channel waveforms.

LISTING 1—FOUR-CHANNEL PC-PORT WAVEFORM-SAMPLING ROUTINE

```
lea dx,buffer
mov dx,sta_reg
in al, dx
and al,20h
jz pe_l

lea dx,mask_reg
mov dx,mask_reg
in al, dx
or al,01h
; Mask Time Interrupt
out dx,al

lea dx,sta_reg
mov cx,0x0200h
; Sample Size
```

Use your PC’s printer port to record four-channel waveforms.
place in pure MS-DOS mode, and not in a Windows multitasking environment. Second, it does not allow interrupts to occur during sampling. You must thus mask interrupts during the sampling procedure. Moreover, you need to equalize the odd and even sampling periods. Because the even sampling period is shorter than the odd one, the routine adds three nonoperation (NOP) instructions in the even sampling period. When the sampled data attains approximately 60 kbytes, the program restores the interrupt-mask register and generates a file named samsig.dat. **Listing 2** is a QBASIC program for displaying the recorded waveforms. The program reads and then displays the samsig.dat file. **Figure 2** provides an example, a recording of the command and data signals from an Analog Devices AD7896 A/D converter. You can increase the sampling period by inserting some NOP instructions in the sampling routine. You can download **Listings 1 and 2** from EDN's Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea #2536. (DI #2536)

116 edn | May 25, 2000

LISTING 2—DISPLAY PROGRAM FOR SAMPLED WAVEFORMS

```qbasic
KEY 20, CHR$(0) + CHR$(72): ON KEY(20) GOSUB UpLine
KEY 21, CHR$(0) + CHR$(80): ON KEY(21) GOSUB DownLine
KEY 15, CHR$(0) + CHR$(73): ON KEY(15) GOSUB UpPage
KEY 16, CHR$(0) + CHR$(81): ON KEY(16) GOSUB DownPage
KEY 22, CHR$(0) + CHR$(75): ON KEY(22) GOSUB Left
KEY 23, CHR$(0) + CHR$(77): ON KEY(23) GOSUB Right
KEY 17, CHR$(0) + CHR$(1): ON KEY(17) GOSUB Finish

SCREEN 12
DIM chr AS STRING * 1
DIM prev(3) AS INTEGER
DIM ptr AS LONG
OPEN "samsig.dat" FOR BINARY AS #1
GET $1, 1, chr: loc = CHR$(chr) MOD 16
FOR k# = 0 TO 3
prev(k#) = loc MOD 2: loc = loc \ 2
NEXT k#

d# = 12: dd# = 16: f1# = 0: ptr = 0
KEY(17) ON

WHILE f1# = 0
KEY(15) ON: KEY(16) ON: KEY(20) ON
KEY(21) ON: KEY(22) ON: KEY(23) ON
LOCATE 1, 36: PRINT ptr
FOR i# = 0 TO 255: FOR j# = 0 TO 128: NEXT j#
NEXT i#

KEY(15) STOP: KEY(16) STOP: KEY(20) STOP
KEY(21) STOP: KEY(22) STOP: KEY(23) STOP
FOR i# = 0 TO 4
y# = i# * 96 + 32
FOR j# = 1 TO 320
GET $1, ptr + j# + i# * 320, chrs
GET loc = ASC(chr) MOD 16: hi# = ASC(chr) \ 16
x# = 2 * j#
FOR k# = 0 TO 3
IF prev(k#) <> loc MOD 2 THEN
LINE (x#, y# + k# * dd#) - (x#, y# + k# * dd# + d#)
ELSE
IF (loc MOD 2) THEN
PSET (x#, y# + k# * dd#)
ELSE PSET (x#, y# + k# * dd# + d#)
END IF
END IF
prev(k#) = loc MOD 2: loc = loc \ 2
NEXT k#
NEXT j#
NEXT i#
WEND
KEY(15) OFF: KEY(16) OFF: KEY(20) OFF
KEY(21) OFF: KEY(22) OFF: KEY(23) OFF
CLOSE #1
END

UpLine:
IF ptr < 61120 THEN
CLS 1: ptr = ptr + 320
ENDIF
RETURN

Left:
IF ptr < 61440 THEN
CLS 1: ptr = ptr + 1
ENDIF
RETURN

UpPage:
IF ptr < 59840 THEN
CLS 1: ptr = ptr + 1600
ENDIF
RETURN

DownLine:
IF ptr > 320 THEN
CLS 1: ptr = ptr - 320
ENDIF
RETURN

Right:
IF ptr > 1 THEN
CLS 1: ptr = ptr - 1
ENDIF
RETURN

DownPage:
IF ptr > 1600 THEN
CLS 1: ptr = ptr - 1600
ENDIF
RETURN

Finish:
F1# = 1
RETURN
```

Figure 2

Four channels of data from an AD7896 and the timing relationships thereof are visible.

To Vote For This Design, Enter No. 364 at www.ednmag.com/infoaccess.asp
Pulse generator has low top-side aberrations

Jim Williams, Linear Technology Corp, Milpitas, CA

MPULSE-RESPONSE and rise-time testing often require a fast-rise-time source with a high degree of pulse purity. These parameters are difficult to achieve simultaneously, particularly at subnanosecond speeds. The circuit in Figure 1, derived from oscilloscope calibrators (Reference 1), meets the speed and purity criteria. It delivers an 850-psec output with less than 1% pulse-top aberrations. Comparator IC1 delivers a 1-MHz square wave to current-mode switch Q2-Q3. Note that IC1 obtains power between ground and −5V to meet the transistors’ biasing requirements. Q1 provides drive to Q2 and Q3. When IC1 biases Q2, Q3 turns off. Q3’s collector rises rapidly to a potential determined by Q1’s collector current, D2, and the output resistors combined with the 50Ω termination resistor. When IC1 goes low, Q2 turns off, Q3 turns on, and the output settles to 0V. D2 prevents Q3 from saturating.

The circuit’s output transition is extremely fast and singularly clean. Figure 2, viewed on a 1-GHz real-time-bandwidth oscilloscope, shows 850-psec rise transitions. Figure 3, viewed with 1-GHz bandwidth, pulses are free of discontinuities and anomalies.

Need a fast, clean pulse? This simple circuit provides 500-mV, 850-nsec pulses with a high degree of purity.
time with exceptionally pure pretransition and post-transition characteristics. **Figure 3** details the pulse-top settling. The photo shows the pulse-top region immediately following the positive 500-mV transition. Settling occurs within 400 psec of the edge’s completion with all activity within ±4 mV. The 1-mV, 1-GHz ringing undoubtedly stems from breadboard-construction limitations; you can probably eliminate it by using stripline-layout techniques. The level of performance of this circuit requires some trimming. The oscilloscope you use should have at least 1-GHz bandwidth. You adjust trimmers TR2 and TR3 for the best pulse presentation. TR1 sets the output amplitude at 500 mV across the 50V termination. The trims are somewhat interactive, although not unduly so, and converge quickly to give the results described. (DI #2530)

Reference

To Vote For This Design, Enter No. 365 at www.ednmag.com/infoaccess.asp

Circuit provides ADSL frequency reference

Bert Erickson, Fayetteville, NY

The discrete-multitone (DMT) frequencies that asymmetrical-digital-subscriber lines (ADSL) use are integral multiples of a common frequency, and the symbol period is the inverse of this frequency. Integration over the symbol period allows the sine and cosine orthogonal waveform products to vanish for all multiples of the common frequency except for those having the same frequency. As the ADSL standards (T1.413) specify, the 256 channels are separated by 69/16 kHz. You can generate the midchannel frequencies with a PLL, but the reference frequency differs from that of crystals for computers and clocks. However, by using the circuit in **Figure 1**, you can generate the frequency by using a 3.58-MHz crystal to control the horizontal scanning rate in television sets. A typical 3.58-MHz crystal has a tolerance of ±50 ppm and a load capacitance of 18 pF. This tolerance provides a frequency of 3.579366 to 3.579724 MHz. If you multiply this common DMT frequency by 830, the result is 830×69/16 kHz, or 3.579375 MHz, which is 9 Hz above the crystal’s lower tolerance limit. Assuming that you can select the C1 and C2 capacitors at either side of the crystal to tune the frequency near the lower tolerance limit, you can also select them for the desired frequency.

In other words, reduce the oscillator frequency with bistable flip-flops and combine the outputs in a NAND gate to divide by 830. For the 3.58-MHz crystal, design values for C1 and C2 were 23.6 and 75.7 pF, respectively. We chose 22 pF for C1 and 68 pF for C2. A trimmer capacitor in parallel with C2 reduces the frequency. When C2 increased from 22 to 90 pF, the frequency decreased by 448 Hz and handily bridged the 3.579545- and 3.579375-MHz frequencies. Tests showed that the lower frequency was more than 100 Hz below 3.579357 MHz, but the exact number depends on the calibration of the counter. Because 830 is a 10-bit binary number, the circuit divides by 415 first to permit combining with an eight-input NAND gate. A strobe applied to a flip-flop then creates a square wave for the reference-frequency output. (DI #2531)

To Vote For This Design, Enter No. 366 at www.ednmag.com/infoaccess.asp

Figure 1

Using a common TV crystal, you can generate the reference frequency for ADSL systems.
Nothing compares with the C language for working with bits. C provides a rich set of signed and unsigned number formats, along with many intrinsic bit-manipulation operators. However, most of the popular rapid-application-development Windows languages lack C’s ability to easily work with bits. Visual Basic is such a language. Although it’s hard to find a faster language to develop a small to midsized application in Windows, Visual Basic starts to show its weakness when it comes time to talk to hardware. Hardware programming is usually bit-oriented. That is, it’s necessary to turn bits on and off or shift out serial streams to get the hardware to operate correctly. The ActiveX control serves just these types of bit-manipulation needs (Figure 1). The control includes functions for changing binary strings to numbers, a hex-output function, the ability to set and clear bits in a word, and the ever-needed shift-left and -right functions. As an example, many of the three-wire serial devices need to have a setup word shifted to them. Suppose you need to shift the setup word 0111 1101 first to an A/D converter to initiate a conversion on some channel. You can use the functions in the ActiveX control to easily effect the shift operation, as follows:

\[\text{Setup_word} = \text{Bits} \left(\text{"01111101"} \right) \]

For \(i = 0 \) to 7

\[\text{Val} = \text{ShiftRight}_8(\text{setup_word},0) \]

write val to the A/D here

next i

In the above example, val has the values 1, 0, 1, 1, 1, 1, 0, 1 during each iteration of the loop. The routine can then clock these bits to the A/D converter as required by the hardware. If the operation requires MSB first, you can use the ShiftLeft function. The SetBit and ClearBit functions are useful when using a port as clock and data lines, because you can set individual bits as needed instead of doing entire port writes. Any modern programming language that can use ActiveX controls, such as Agilent VEE, Visual Basic, Delphi, and others, can use the functions given here. You can download the ActiveX control from EDN’s Web site, www.ednmag.com. Click on “Search Databases” and then enter the Software Center to download the file for Design Idea #2534. The routine includes all the functions listed in Figure 1, plus a few more, with application examples. (DI #2534)

To Vote For This Design, Enter No. 367 at www.ednmag.com/infoaccess.asp

Figure 1

Function GetBit(ByVal x As Long, ByVal n As Integer) As Integer
Returns the value of bit n in input value x. Returns 1 or 0 if bit is set or not. x = 1 to 16 bit, n = 0 = LSB.
Example: GetBit(16,5) returns 1.

Function Bits(ByVal x As String) As Long
Given a representation of a binary string, returns the value. inval may be any length from 1 to 16 bits.
Example: Bits("101") returns 5.

Function BitsStr(ByVal x As Long, ByVal sizeof As Integer) As String
Given a number, returns with a representation of a binary string. sizeof is the width of the return field (1 to 16 bits).
Example: BitsStr(2,8) returns "01010010".

Function HexStr(ByVal x As Long, ByVal sizeof As Integer) As String
Given a number, returns with a representation of a hex string. sizeof is the width of the return field (1 to 16 bits).
Example: HexStr(197,8) returns "B3".

Function ClearBit(ByVal x As Long, ByVal n As Integer) As Long
Clears bit position n in input x. Returns new x value.
x may be 1 to 16 bits, n = 0 = LSB.
Example: ClearBit(16,4) returns 0.

Function SetBit(ByVal x As Long, ByVal n As Integer) As Long
Sets bit n in input value x. Returns new x. x may be any width 1 to 16 bits, n = 0 = LSB.
Example: SetBit(14) returns 16.

Function ShiftRight(ByVal x As Integer, ByVal y As Integer) As Integer
Shifts the x bit value y right by 1 place. Bit shifted in is y.
Example: ShiftRight(129,1) Returns 1 and the new value for x (was 129) is 192.
The simplicity of low-side current monitoring can mask the advantages of a high-side approach. You can monitor load currents in a power supply, a motor driver, or another power circuit on either the high or the low side (ground). However, don’t let the ease of low-side monitoring cause you to overlook its dangers or the advantages of a high-side approach. Various fault conditions can bypass the low-side monitor, thereby subjecting the load to dangerous and undetected stresses. On the other hand, a high-side monitor connected directly to the power source can detect any downstream failure and trigger the appropriate corrective action. Traditionally, such monitors required a precision op amp, a boost power supply to accommodate the op amp’s limited common-mode range, and a handful of precision resistors. Now, the MAX4172 IC can sense high-side currents in the presence of common-mode voltages as high as 32V (Figure 1). IC, provides a ground-referenced current-source output proportional to the high-side current of interest. This output current, equal to the voltage across an external sense resistor divided by 100, produces a voltage output across a load resistor.

\[I_C \text{, and a few external parts form a low-cost circuit breaker. } R_{\text{SENSE}} \text{ senses load currents, and } Q_4 \text{ controls the currents. The design accepts inputs of 10 to 32V; you can easily modify it to operate from voltages as low as 6.5V.} \]

The initial application of \(V_{\text{IN}} \) and \(V_{\text{CC}} \) places the breaker in its trip state. Pressing \(S_1 \) resets the breaker and connects power to the load, thereby activating \(Q_4 \). \(Q_3 \) powers \(I_C \), and \(V_{\text{THRESH}} \) establishes the overcurrent threshold, \(V_{\text{THRESH}} = V_{\text{CC}} - V_{\text{BE(4B)}} \). Because \(V_{\text{CC}} \) (2.7 to 5.5V typical) equals 5V and the base-emitter voltage of \(Q_{4B} \) is approximately 0.7V, \(V_{\text{THRESH}} \) is typically 4.4V. The circuit trips at a nominal load current of 1A. The values for \(R_{\text{SENSE}} \), \(R_{\text{THRESH}} \), and \(R_{\text{OUT}} \) are functions of the system’s accuracy and power-dissipation requirements. First, select \(R_{\text{SENSE}} = 50 \text{ m\Omega} \) and \(R_{\text{THRESH}} = 10 \text{ k\Omega} \). Then, calculate \(R_{\text{OUT}} = V_{\text{CC}} / I_{\text{LOAD}} R_{\text{SENS}} Gm \), where \(I_{\text{LOAD}} \) is the trip point (1A) and \(Gm \) (\(IC \)'s typical transconductance) equals 0.01A/v. Thus, \(R_{\text{OUT}} = 10 \text{ k\Omega} \).

Applying power to \(Q_3 \) and \(Q_{4B} \) causes \(Q_{4B} \) to conduct, which establishes \(V_{\text{THRESH}} \) and activates \(Q_3 \) to power \(IC \). A fraction of the load current flows through \(R_{\text{SENS}} \) mirrors to the \(IC \) output and appears as a voltage, \(V_{\text{OUT}} \), across \(R_{\text{OUT}} \). \(Q_{4B} \) turns off when \(V_{\text{OUT}} \) increases above \((V_{\text{THRESH}} + V_{\text{BE(4A)}}) \), turning off \(Q_3 \) and causing a drop in \(V^+ \). When \(V^+ \) reaches 2.67V (typical), \(PG \) goes high, thereby tripping the breaker by turning off \(Q_3 \). \(Q_4 \) adds feedback to ensure a clean turn-off at the trip level. Current draw in the tripped state is minuscule and equals \(V_{\text{CC}} \), load current, 0.5 mA typical. Press \(S_1 \) to reset the breaker. The design is intended for low-cost applications in which the absolute accuracy of the trip current is not critical. The accuracy, which depends on variations in \(V_{\text{CC}} \) and the base-emitter voltages of \(Q_{4A} \) and \(Q_{4B} \) and on the error current through \(R_4 \), is approximately ±15% at a trip current of 1A. (DI #2532)

To Vote For This Design,
Enter No. 368 at www.ednmag.com/infoaccess.asp

Figure 1

A current-sense amplifier and a few transistors form a low-cost circuit breaker.