In analog design, you might need to create an amplifier with nonlinear dynamic characteristics—for example, logarithmic, exponential, or square-law. Usually, such amplifiers are complicated. However, the project often does not require mathematical precision. For example, you might just need to increase the dynamic range of an amplifier, or to eliminate saturation for an extended input-voltage range. The Design Idea is based on the nonlinear voltage attenuator with the attenuation ratio $m = \frac{V_{ATT}}{V_{IN}}$ controlled by the input voltage (Figure 1a). When V_{IN} is small enough to hold off D_1, $m = 1$. When the input voltage increases and attains a certain threshold voltage, V_{TH}, the diode conducts, and the attenuation ratio decreases. The new value of m depends on the values of R_0, R_2, R_1, and R_1 determine the threshold level, V_{TH}. Hence, you can estimate the resistors R_1 and R_2 for a given R_0, V_{TH}, and m as:

$$R_2 = R_0 \frac{m}{1 - m};$$

$$R_1 = R_0 \left(\frac{V_R}{V_{TH} - V_D} - 1 \right).$$

Note that you can create any characteristic by choosing the proper ratio, m, and the threshold voltage for each fragment of the resulting characteristic. Also, the linear approximation is good for calculation purposes, but the real ratio changes smoothly near the threshold voltage. Finally, use Schottky diodes to increase the voltage range of regulation. Figure 1b shows the dynamic response of the attenuator for the constant ratio $m = 0.16$ but for different threshold voltages. The measured voltage is $V = V_{TH} - V_D$. To increase the dynamic range of an amplifier, you should put the nonlinear attenuator at the input of the amplifier. To
widen the range, you can use a two-stage attenuator. Figure 2 shows such an amplifier and its recorded characteristic. The applications of the nonlinear attenuator are not limited to increasing dynamic range. You can obtain a square-law response, for example, by putting the attenuator in a feedback circuit (Figure 3).

Regulator IC forms convenient overvoltage detector

Robert Bell, On Semiconductor, Phoenix, AZ

Figure 1 shows a simple, stand-alone overvoltage detector. The intent of the circuit is to monitor a voltage, \(V_{\text{MONITOR}} \), and set the output, \(V_{\text{OUT}} \), high when the monitored voltage exceeds a preset threshold. The minimum allowable threshold for this circuit is 1.25V. The operation of the circuit revolves around the TLV431 shunt regulator. This IC is based on the popular TL431 shunt regulator. The difference is that the TLV431’s internal reference is 1.25V, as opposed to 2.5V for the TL431. When the voltage at the control input is less than 1.25V, the regulator’s cathode current is essentially zero. If the control input exceeds 1.25V, the cathode conducts and turns Q1 on to produce a high output at \(V_{\text{OUT}} \). The trip threshold, determined by resistors \(R_1 \) and \(R_2 \), is \(V_{\text{THRESHOLD}} = 1.25(1+R_1/R_2) \). D1, the diode between \(V_{\text{OUT}} \) and the control input, provides hysteresis and latches the overvoltage fault condition. If you don’t need latching operation, you can add a resistor in series with the diode to lower the hysteresis value and prevent the circuit from latching.

Circuit provides effective LCD drive
Luo Ben Cheng, Chinese Academy of Science, Beijing, China

LCDs find wide use in portable instruments, thanks to their attractive display and low power consumption. The circuit in Figure 1 is an effective driver for LCDs. The circuit comprises two main sections—the ICM7211 drivers (IC2 and IC3) and the YN06 display itself (IC1). The Intersil (www.intersil.com) ICM7211 is a 4-bit LCD driver that needs no external components. It contains three basic sections: a reference signal-generator circuit, an input and display-channel section, and a digit-selection and drive circuit. It contains a complete pulse-generator unit and an oscillator-divider clock-drive circuit. When you disconnect the BP pin (Pin 5), the IC produces a 125-Hz pulse signal. YN06 is a six-bit character LCD, which uses 5 decimal bits and 2 column bits. To control the display, you need a 4-bit BCD driver.

In Figure 1, an AT89C51 µC controls the two ICM7211 drivers. The drivers in turn drive the 6-bit YN06. Pin 5 of IC2 and IC3 connect to the COM pin (Pin 1) of IC1. The reference signal-generator circuit works in open-loop mode. This mode results when you disconnect the OSC pin (Pin 36) of IC and connect the OSC pin (Pin 36) of IC, to ground. The result is a 125-Hz pulse train, which serves as the LCD’s drive clock. The chip-enable signals CST of IC2 and IC3, to connect to the µC’s pins P2.5 and P2.6, and CS2 connects to Pin P3.6, which serves as a read or write port. In addition, data-input ports B0 to B3 and digital-selection input ports DS1 and DS2 connect to the data bus through the D0 to D5 lines. To control the LCD, you need only provide 4-bit BCD codes through the µC. Unfortunately, in some cases, the display needs decimal bits. The normal method of providing these bits is to add another LCD decimal driver, such as a CD4056.

Note that the LCD in Figure 1 needs only 6 bits, whereas the drivers can provide 8 bits. That fact means that two more seven-segment output ports go unused. You can take advantage of the unused ports of IC2 and IC3 to solve the decimal-bit problem. Connect DP1 (Pin 5 of IC2) to Pin 25 of IC3, DP2 (Pin 9 of IC2) to Pin 23 of IC3, DP3 (Pin 13 of IC2) to Pin 21 of IC3, and DP4 (Pin 17 of IC2) to Pin 25 of IC3. Also, connect COL1 (Pin 33 of IC2) to Pin 23 of IC3, and COL2 (Pin 42 of IC2) to Pin 24 of IC3. With the help of some µC software, you can control the LCD in a flexible fashion. Listing 1 shows the AT89C51 assembly code for controlling the LCD. You can download Listing 1 from EDN’s Web site, www.ednmag.com. Click on “Search Databases” and then enter the Software Center to download the file for Design Idea #2574.
LISTING 1—ASSEMBLY CODE FOR AT89C51 LCD DRIVE

ORG 5000H
LJMP MAIN

ORG 5001H
TOLA EQU 12H
TOLB EQU 13H
SDATA EQU 14H
RTD EQU 15H
ABSD EQU 28H
ABSD2 EQU 29H
MAIN: CLR EA ;CLOSE ALL THE INTERRUPTS
CALL DISPLAY ;DISPLAY DATA
HERE:
N0P
AJMP HERE ;WAIT FOR INTERRUPTS

DISPLAY: MOV X, @R0
;INPUT THE DATAS FOR DISPLAY
MOV A, R0
;FOR ORG-6 BIT LCD DRIVER
MOV R0, @R0
;DATA BUFFERS
MOV F0, A
;STORE THE DECIMAL BIT
CALL DEC
;PROCESS THE DECIMAL BIT
CALL DEC
;FORMAT THE DATA FOR DISPLAY
SDIR: MOV @R0, #00H
;MOV To LCD DRIVER U1
MOV A, R0
INC B
SANE BLSR
MOV @R0
SIDIR: MOV @R0, #00H
;MOV To LCD DRIVER U2
MOV A, R0
INC B
SANE BLSR
MOV @R0
SIDIR: MOV @R0, #00H
;MOV To LCD DRIVER U3
MOV A, R0
INC B
SANE BLSR
MOV @R0
SIDIR: MOV @R0, #00H
;MOV To LCD DRIVER U4
MOV A, R0
INC B
SANE BLSR
MOV @R0
SIDIR: MOV @R0, #00H
;RECOVER THE INFORMATION
RET

DOT: MOV BRAHBDRO ;DECIMAL BIT PROCESSING
JB FFLG3, DB
JB FFLG3, DA
JB FFLG3, DC
JB FFLG3, DE
JB FFLG3, DF
JB FFLG3, DL
DB: MOV @R0
;MOV To LCD DRIVER U1
MOV A, R0
JMP DCOL
DCOL: AJMP DCOL

D0: MOV @R0
;MOV To LCD DRIVER U1
MOV A, R0
JMP DCOL
DCOL: AJMP DCOL

μC controls multichemistry battery charger

Kelly Flaherty, National Semiconductor, Santa Clara, CA

Figure 1 is a generalized block diagram of a multichemistry battery charger. A COP8ACC5 μC handles its key charging features. The μC is available in a 20-pin (15 I/O pins) SOIC or a 28-pin (23 I/O pins) SOIC/DIP. It contains 4 kbits of internal ROM. The controller's A/D inputs monitor the battery-voltage pin, ID pin, and thermistor pin. For more complex charging systems, you can add external EEPROM via the Microwire serial interface. Such an external EEPROM might be useful for storing battery-specific charge history, a battery-specific look-up table for more accurate charging, or both. The LP2950 doubles as a low-dropout-voltage regulator for the μC and as a ±0.5% reference for the charge-control block. The charge-control block is basically a constant-voltage, constant-current regulator, as the voltage-versus-current curve in **Figure 1** shows. The μC reads the battery pack’s ID pin and adjusts the circuit

Figure 2

A battery charge-control block operates in both constant-current and constant-voltage mode.

This stand-alone battery charger handles multiple battery chemistries.
accordingly. If the battery is a lithium-ion type, the charge-control block adjusts the fast-charge rate according to the battery’s capacity rating and adjusts the constant voltage to the critical maximum voltage for lithium-ion. If the battery is nickel-based, similar adjustments take place. However, the voltage adjustment is to a level greater than the maximum battery voltage that is still low enough to accommodate the power dissipation of the pass transistor.

Figure 2 shows a possible implementation of the charge-control block. It is an adjustable constant-current, constant-voltage regulator under control of a μC. The switches can be analog switches, such as the CD4066; discrete transistors, such as the 2N3904; or FETs, such as the 2N7002. The default setting (switches open) is 4.2V and 0.5A. When \(S_1 \) closes, current regulation increases by the change in equivalent resistance (\(R_{\text{equiv}} \)):

\[
I_{\text{CHRG}} = \left(V_{\text{REF}} \times R_2 \right) / \left(R_{\text{equiv}} \times R_{\text{SENSE}} \right).
\]

\(S_1 \) switches in \(R_2 \), resulting in the doubling (to 1A) of the default regulated current. Closing \(S_2 \) similarly increases the level of the regulated voltage from the LM3420 lithium-ion charge controller. The LM3420 contains an error amplifier, a precision voltage reference, and a trimmed voltage divider that sets the regulated voltage to within \(\pm 0.5\% \). The IC is available in five fixed voltage levels that correspond to 4.2V per cell for one, two, three, and four cells. The Comp pin of the LM3420 switches an external resistor, \(R_p \), in parallel with one of the internal divider resistors, and results in a regulated voltage of 7.2V. \(Q_1 \) provides a disconnect between the battery and the LM3420 upon removal of the input voltage. \(D_1 \) and \(D_2 \) act as an exclusive-OR gate for current regulation of voltage regulation. When \(V_{\text{REG}} \) is reached, \(D_2 \) overrides \(D_1 \).

Printer port controls reference generator

Yongping Xia, Teldata Inc, Los Angeles, CA

Figure 1 shows a programmable, precision reference-voltage generator. A PC’s printer port controls the generator. The voltage range is 0 to 4.0955V in 0.5-mV increments. Because the computer’s hard drive saves the reference setting, when you restart the computer, the output voltage is exactly the same as the previous setting. The Max5130 is a 13-bit serial voltage-output DAC with an internal reference. It uses a three-wire serial interface. Because the IC has everything necessary for a programmable reference, the circuitry is simple. The printer port’s Pin 2 powers the circuit. Pins 3, 4, and 5 provide chip select (CS), data (DIN), and clock (SCLK), respectively, to the Max5130. Listing 1 is a C program for the generator. “U” and “D” keys speed the voltage setting, given that the DAC has 8192 steps. Push “U” or “D” for 100-step changes, equivalent to 650-mV steps. The “u” and “d” keys fine-tune the output with 0.5 mV per step.

Use a PC’s printer port and a 13-bit DAC to configure a precision reference generator.

LISTING 1—C PROGRAM FOR PRECISION REFERENCE GENERATOR

```c
#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include <stdlib.h>
#include <string.h>

#define POWER_ON 0x01
#define CLR_HI 0x02
#define DATA_HI 0x04
#define DATA_LO 0x06

typedef unsigned int WORD;
FILE *data_file;

int i, out_port, in, out=0;
long data, step;
float ref_voltage;

void find_port(void) /* find printer port address */
{
    out_port=*(WORD far *)(0x040d,8);
    out=POWER_ON;
    outport(out_port, out); /* power on */
    delay(100);
}

void show_ref(void) /* display voltage */
{
    gotoxy(2,2);
    ref_voltage=(float)step/2000;
    printf("Voltage = %.4f V", ref_voltage);
}

void write_ref(void) /* write data to a driver */
{
    if ((data_file = fopen("c:\\ref_data", "wb")) == NULL)
        printf("File open failed.");
    fseek(data_file, 0, 0);
    fwrite(&step, 1, 2, data_file);
    fclose(data_file);
}

void read_ref(void) /* read data from a driver */
{
    if ((data_file = fopen("c:\\ref_data", "rb")) == NULL)
        printf("Data file open failed.");
    data=step=0;
    while (fread(&step, 1, 2, data_file))
        data+=data;
    fclose(data_file);
}

void send_clock(void)
{
    out=CLR_HI;
    outport(out_port, out); /* clock high */
    delay(2);
    out=CLR_LO;
    outport(out_port, out); /* clock low */
    delay(2);
}

void set_ref()
{
    /* send data to MAX5130 */
    out=CLR_HI;
    outport(out_port, out); /* as high */
    delay(2);
    data=step=0;
    out=CLR_LO;
    outport(out_port, out); /* as low */
    for (i=0; i<16; i++)
    {
        if (data>>i&1) /* send bit data */
        {
            out=DATA_HI;
            outport(out_port, out); /* as high */
            delay(2);
            send_clock();
            out=DATA_LO;
            outport(out_port, out); /* as low */
            delay(2);
            show_ref();
            send_clock();
        }
        else
            delay(2);
        data=step=0;
    }
}
```

(continued on pg 134)
RS-232 communications with one μC and more than one remote system can be problematic, because most μCs contain only one UART, which provides an interface between synchronous and asynchronous ports. The multiplexer in Figure 1, IC2, allows multiple channels (four, in this case) to share a single UART. The dual four-to-one multiplexer allows transceiver IC1 to form a network with the four remote transceivers IC3 to IC6. Table 1 defines the channel-selection codes. Selecting Channel 1, for instance, enables IC1 to communicate with IC3, to IC6, without being loaded by IC4, IC5, IC6. Pulldown resistors inside the remote transceivers force the outputs of unselected receivers to a known state.

The circuit’s supply-voltage range (3 to 5.5V) makes it compatible with 3 and 5V logic. IC2 receives its power directly from the V1 and V2 terminals of IC1, whose 5.5V outputs come from an internal charge pump. The multiplexer handles rail-to-rail signals, so obtaining its power from IC2 ensures that RS-232 signals pass directly through, regardless of amplitude. Each transceiver’s charge pump requires four small capacitors (not shown), whose values depend on the Vpp range but do not exceed 0.47 μF. Note that pulling too much current from the charge-pump terminals of IC1, V+ and V-, can cause these rails to droop and may pull the IC’s RS-232 transmission levels out of specification.

<table>
<thead>
<tr>
<th>TABLE 1—CHANNEL SELECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Figure 1

One UART and one multiplexer enable one RS-232 transceiver to communicate with four others.
Differential amp drives high-speed ADC
Moshe Gerstenhaber and Chau Tran, Analog Devices, Wilmington, MA

The schematic in Figure 1 depicts a differential-input/differential-output or single-ended-input/differential-output amplifier with a gain of two. You can use the low-distortion circuit to drive high-speed ADCs. You can also use it to drive precision delta-sigma ADCs. The circuit contains two active-feedback amplifiers, with input connections such that one amplifier acts as a voltage follower and the other acts as an inverter. You take the output differentially from the amplifiers’ outputs. The ADC’s reference output can connect to VCM to set the output common-mode voltage of the amplifier stages, or you can set this voltage by external means. Resistors R_{F1} and R_{F2} reduce the distortion of the system. We added R_1 and R_2 for displaying the effects of the amplifiers’ mismatch. Figure 2 is a performance photo at 10 MHz and a gain of two. The top trace is the single-ended input signal; the two bottom traces are the output signals, out of phase with each other. Figure 3 demonstrates the gain error and the low distortion of the system. The bottom trace, at 10 mV/div, shows the effects of the amplifiers’ mismatch at the common-mode node.

In the bottom traces, the differential outputs are 180° out of phase with each other.