The diaphragm of a condenser microphone is the movable plate of a capacitor. With a polarized capacitor, the vibration of the diaphragm in relation to the back plate produces an ac audio-output voltage. The condenser capsule has a capacitance of 10 to 60 pF; thus, you should connect it to an impedance converter with extremely high input impedance for a flat frequency response.

The conventional impedance converter is a JFET source follower with an additional amplifying and power-decoupling circuit. You supply power to the impedance-converter circuitry using the same microphone-cable conductors that carry the audio signal. The balanced audio pair at the XLR connector’s pins 2 and 3 both carry the same positive dc voltage, or phantom power, relative to Pin 1’s ground. The amplifying/decoupling circuit contains an audio transformer or a couple of capacitors to separate the dc power from the audio signal.

High-value dc-blocking capacitors can generate measurable and audible distortion (Reference 1). Microphone
circuits rarely use the highest-quality capacitors because of space limitations. You can design the impedance converter without dc-blocking capacitors.

Figure 1 shows the self-balanced impedance converter. The self-polarized electret condenser-microphone capsule, \(X_1 \), connects to the high-impedance gate of JFET \(Q_1 \). \(Q_2 \), an ac-current source, loads source follower \(Q_4 \), thanks to \(C_2 \), has high impedance but allows a fixed dc voltage on the \(Q_1 \) source.

The circuit sources phantom power at 48V dc through \(R_{PH1} \) and \(R_{PH2} \) at the mixing-console end of the microphone cable. \(Q_1 \)'s emitter drives—and \(R_{PH1} \) loads—emitter follower \(Q_3 \). The signal from \(Q_3 \)'s emitter bootstraps the drain of \(Q_1 \), reducing the ac voltage across the gate-to-drain capacitance and resulting in lower input capacitance at the gate of \(Q_1 \). \(R_{PH2} \) supplies current for shunt-regulator-voltage sources \(D_2 \) and \(Q_4 \). \(R_4 \) and \(C_4 \) attenuate zener-diode noise. Integrator IC \(1 \) compares the dc voltages on the XLR connector's pins 2 and 3 and, through \(Q_2 \) and \(Q_3 \), maintains a difference equal to the op amp's input offset voltage. Thus, if the microphone input at the mixer console is transformer-coupled, both ends of its winding are at the same voltage. No dc will flow through the winding and saturate the core. IC \(1 \) should have a common-mode-input-voltage range equal to that of the positive-supply rail. You can accomplish this task using, for example, an op amp with a P-channel JFET input stage. Tables 1 and 2 and Figure 2 show typical performance parameters for the impedance converter in Figure 1.

Simple sawtooth generator operates at high frequency

Luca Bruno, IIS Hensemerber Monza, Lissone, Italy

Pulse-width-modulation signal-generator circuits often use an analog sawtooth-oscillator function, but it also can be useful in other applications. The inexpensive sawtooth generator in Figure 1 suits use in low-power applications operating at frequencies as high as 10 MHz and beyond and those in which ramp linearity and frequency accuracy are not prominent concerns.

The circuit employs a single Schmitt-trigger inverter, which acts as a modified astable multivibrator. The output waveform is the voltage across timing capacitor \(C_1 \), which ramps between the lower and the upper threshold voltages of the

TABLE 1. PERFORMANCE PARAMETERS

<table>
<thead>
<tr>
<th>Mixing-console input impedance (R_{in}) (kΩ)</th>
<th>Peak input clipping voltage (V)</th>
<th>Input voltage at –80-dB (0.01%) distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>3.1</td>
<td>140 mV rms</td>
</tr>
<tr>
<td>2.4</td>
<td>5.8</td>
<td>750 mV rms</td>
</tr>
<tr>
<td>10</td>
<td>13.6</td>
<td>3.1V rms</td>
</tr>
</tbody>
</table>

TABLE 2. PERFORMANCE PARAMETERS FOR JFETs

<table>
<thead>
<tr>
<th>Q, part</th>
<th>A-weighted noise voltage (μV rms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SK596</td>
<td>4</td>
</tr>
<tr>
<td>2SK660</td>
<td>3.6</td>
</tr>
<tr>
<td>2SK2219</td>
<td>4.1</td>
</tr>
<tr>
<td>TF202C</td>
<td>4.6</td>
</tr>
</tbody>
</table>

REFERENCE

inverter. Charging the $R_T C_T$ network at constant voltage causes the ramp, so its response is exponential, approximately linear only for the initial part of the exponential rise.

A simple trick to improve ramp linearity is to charge the $R_T C_T$ network with a higher-voltage source. Capacitor C_1, which has a value that is at least 10 times greater than that of C_T, acts as a charge pump. When the gate output is low during the falling edge of the sawtooth, capacitor C_1 quickly charges through diode D_1 to V_{CC} minus the forward voltage of D_1. Meanwhile, capacitor C_T discharges quickly through diode D_2.

When the falling edge of C_T voltage reaches the Schmitt trigger’s lower trip point, V_T^-, the gate output returns high. The charge on C_1 drives the cathode of D_1 to the sum of the voltage of capacitor C_1 and the gate's high output voltage. D_1 becomes reverse-biased, and the $R_T C_T$ network begins to charge to the voltage on C_1, along with the gate's high output voltage. When C_T reaches the Schmitt trigger’s upper trip point, V_T^+, the gate’s output returns low, and the cycle repeats.

Ramp linearity is proportional to the sum of the V_{CC} and V_{DD} supply voltages. Because V_{DD} is fixed at 5V, you can improve ramp linearity if V_{CC} can assume a value higher than that of the inverter. You can estimate the ramp’s nonlinearity error using the following equation:

$$E_{NL} = \frac{(M_I - M_F)}{M_I} \times 100$$

where E_{NL} is the percentage of nonlinearity error, M_I is the initial slope of the ramp, and M_F is the final slope of the ramp, and

$$E_{NL} = \left(\frac{V_T^- - V_T^+}{V_{CC} + V_{DD} - V_F - V_T^-} \right) \times 100$$

where V_T^+ is the forward-voltage drop across D_1.

The $R_T C_T$ time constant sets the frequency, F_O, of the sawtooth signal. You can estimate the frequency by applying a simple model to the circuit, which neglects the discharge time of C_T and any discharge of C_1, yielding

$$F_O = \frac{1}{K R_T C_T}$$

where K is a constant, which the following equation defines:

$$K = \ln \left(\frac{V_{CC} + V_{DD} - V_F - V_T^-}{V_{CC} + V_{DD} - V_F - V_T^+} \right)$$

By simulating the circuit with $C_T = 100\, \mu F$ and $R_T = 2.2\, k\Omega$, which agree with the values that the equations theoretically calculated, you can obtain ramp nonlinearity errors of 28% with both V_{CC} and V_{DD} equal to 5V, 18% with V_{CC} of 10V and V_{DD} of 5V, and 14% with V_{CC} of 15V and V_{DD} of 5V.

The breadboarded circuit has $V_{DD} = V_{CC} = 5V$, $C_T = 100\, \mu F$, and $R_T = 2.2\, k\Omega$. IC1 is a standard dual-in-line, eight-pin 74HC14, which has a maximum propagation delay of 15 nsec versus 4.4 nsec for the SN74LVC1G14 inverter with a V_{DD} of 5V. The frequency is approximately 12.7 MHz.

C_T should be a low-leakage film capacitor, and its value should be kept low to reduce its charging and discharging of a large amount of energy. Select C_T with a large enough value compared with the gate’s input capacitance and unwanted stray capacitances so that they do not introduce a significant error. Select R_T with a small enough value that the load impedance, gate input, and stray capacitances do not introduce significant error. You can use any CMOS Schmitt-trigger inverter to test the circuit. To improve frequency accuracy, however, you should use a fast logic family with low propagation delay and high output current, such as the single-gate SN74LVC1G14 from Texas Instruments.

You should measure the threshold trigger voltages, especially V_T^-, directly from the circuit under test before using the preceding equations. Quickly discharging C_T to ground through a finite-propagation-delay inverter causes the lower limit of the ramp to reset below the lower threshold, V_T^-. You can compensate for the resulting error if you use the measured value of V_T^-, which takes this effect into account.

Figure 1 You can use the C_T ramp’s charge and fast discharge to produce a sawtooth. The upper and lower trip-point voltages of the Schmitt trigger limit the sawtooth. See text for the values of V_{CC}, C_T, and R_T. TO IMPROVE FREQUENCY ACCURACY, USE A FAST LOGIC FAMILY WITH LOW PROPAGATION DELAY AND HIGH OUTPUT CURRENT. EDN
The circuit in Fig 1 supplies both 3.3 and 5V to transitional circuits that employ both the new 3.3V and older 5V devices. Additionally, because the regulator accepts either 3.3 or 5V inputs, you could plug it into either a new 3.3V system or an old 5V system.

The circuit consists of two sections: a dc/dc converter and a double-pole, double-throw (dpdt) switch. The dpdt switch comprises a pair of dual n-channel MOSFETs (Q2 and Q3) and their associated high-side drivers.

Upon power-up, the comparator in IC2 determines the state of the circuit. The comparator's output, IC2 pin 6, goes to the input of the MOSFET driver, IC1. The driver internally generates a gate-drive voltage 8.8V above the device's supply voltage. This high voltage drives the appropriate MOSFETs in Q2 and Q3.

IC2 is also the heart of a flying-capacitor, buck/boost dc/dc converter. Unlike other switching-regulator schemes, this topology needs no transformers. Transistor Q1 controls this section's output voltage, V_S. When V_IN is at 5V, Q1 is off, forcing the section to operate as a step-down converter. In this mode, the section produces 3.3V, which goes to the output through Q2B. Also in this mode, 5V power goes directly through Q2A, and Q2B and Q3A are both off.

When V_IN is 3.3V, IC1 turns on Q1, shorting out the 140-kΩ resistor and forcing the dc/dc-converter section into step-up mode. In this mode the converter section generates 5V at V_S, powering the 5V output via Q2B. Also in this mode, 3.3V goes directly from the circuit’s input to the output via Q2A, Q2B, and Q3B are both off.

No-load quiescent current consumption is approximately 500 μA. Lower-frequency converters would reduce power consumption at the expense of a larger inductor. The efficiency of the dc/dc-converter section is 73% in either mode. But because this power accounts for only half of the circuit’s output power, the circuit’s overall efficiency is approximately 80% with V_IN=3.3V and 86% with V_IN=5V.

Figure 1 During the transition from 5V components to 3.3V components, dual-output regulators such as this one will let engineers design surface-mount pc boards bearing both 3.3 and 5V devices. Further, this novel regulator will accept either 3.3 or 5V input power.